
MIT/LCSfFR-548

A TIMING ANALYSIS
OF ly

LEVEL-CLOCKED CIRCUITR

Alexander T. Ishii
charles E. Leiserson

92-289 37

September 1992

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Putlic ecorting ourcieni tar in., cOIi.ectIOn t intofnt atioron is estimated to average I `,our oer fesoon. inlCi•lung trie time tot reviewing instructions*. searcrinq existmng oata sources.
gathenno sna rrt~taInqtne M•. needed. and comolettig an reviewingq -me collectton ot information. Send comments regarding this ourden estimate or anv iOther am.ect at Ttii"
collection 0 rntormatlion. inciuail•q suqggetions tot reducitng tns ourcen to Wasgniqton mewouarters Services. Directorate for information Ooetaions and Pec•nts. 121• je•e•son
Davis Higirwav. Suite 1204. Arirntolnc. V A 22202-4302. and to tire Office ot Management ana Budget. Paoefwori Reduction Project J0704-0138). Was•ing•on. C 20503.

1. AGENCY USE ONLY (Leave blank) j 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A Timing Analysis of Level-Clocked Circuitry

6. AUTHOR(S)

Ishii, A. T., Leiserson, C. E.

7. PERFORMING ORGANIZATION NAME(S) ANn AODRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

MIT, Laboratory for Computer Science
545 Technology Square MIT/LCS/TR-548
Cambridge, MA 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORINGr MONITORING
AGENCY REPORT NUMBER

DARPA N00014-91-J-1698

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper presents an algorithm for verifying proper timing in VLSI circuits where latches are controlled
by the levels (high or low) of the controlling clocks rather than the transitions (edges) of the clocks. Such
level-clocked circuits are frequently used in MOS VLSI design. A level-clocked circuit is modeled as a
graph G = (V, E), where V consists of components-latches and functional elements-and E represents
intercomponent connections. The algorithm verifies the proper timing of a circuit in worst-case O(JV!IEI)
time and O(IVI + IEI) space.

Our analysis decouples the problem of generating timing constraints from the problem of efficiently
checking them. We show how various "base step" functions can be used to provide sufficient conditions for
a circuit to operate properly, and we provide a new base step function which is less pessimistic than those
used in previous timing verifiers, yet correctly handles timing constraints that are "cyclic" or extend across
the boundaries of multiple clock phases or cycles. The base step function is used to derive a "computational
expansion" of the circuit from which a collection of simple linear constraints are derived. These constraints
can be efficiently checked using standard graph algorithms.

14. SUBJECT TERMS j15. NUMBER CF PAGES
32i

VLSI systems, level-clocking, timing constraints, timing analysis, timing verification, computational DOE
expansions, delta-constraints, formal modeling, graph algorithm applications, algorithmic tehniques

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACTRACI

NSN 7540-01-280-5500 Star'caro :orm :98 (Rev 2-8S)
Pf-•C M I:V .ANSI i:0 Z39-11
299- '02

A Timing Analysis of Level-Clocked Circuitry

Alexander T. Ishii
Charles E. Leiserson

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

July 22, 1992

Abstract

This paper presents an algorithm for verifying proper timing in VLSI circuits where latches are controlled
by the levels (high or low) of the controlling clocks rather than the transitions (edges) of the clocks. Such
level-clocked circuits are frequently used in MOS VLSI design. A level-clocked circuit is modeled as a
graph G = (V, E), where V consists of components--latches and functional elements-and E represents
intercomponent connections. The algorithm verifies the proper timing of a circuit in worst-case O([VIIEI)
time and O(IVi + JEJ) space.

Our analysis decouples the problem of generating timing constraints from the problem of efficiently
checking them. We show how various "base step" functions can be used to provide sufficient conditions for
a circuit to operate properly, and we provide a new base step function which is less pessimistic than those
used in previous timing verifiers, yet correctly handles timing constraints that are "cyclic" or extend across
the boundaries of multiple clock phases or cycles. The base step function is used to derive a "computational
expansion" of the circuit from which a collection of simple linear constraints are derived. These constraints
can be efficiently checked using standard graph algorithms.

Keywords: VLSI systems, lev., "locking, timing constraints, timing analysis, timing verification, computa-
tional expansions, delta-constraints, formal modeling, graph algorithm applications, algorithmic techniques.

NTIS cRA&I,
DTIC TAB
Uiannounced 0

J.-stification

Dist bution I

Availabitity Cc'ze3

Avail a";d I or
Dist SPeciai

0This research is supported in part by the Defense Advanced Research Projects Agency under Contracts N00014-87-K-0825
and N00014-89-J-1988, anJ Grant N00014-91-J-1698. Charles Leiserson is supported in part by an NSF Presidential Young
Investigator Award with matching funds provided by AT&T Bell Laboratories, IBM Corporation, and Xerox Corporation.

A preliminary vw-rsion of this paper appears in Advanced Research in VLSI: Proceedings of the 6th MIT Conference, 1990.

Edge-
Triggering

I I I

cLevel-B A B AClockingK4 B A B A

DI I ... I

S I II I

I I I I I I I I I I
I I I I I I I I I I I

I I I | I I I I I I

0 3 6 9 12 15 18 21 24 27

Figure 1: An abstract representation of a level-clocked circuit is shown, along with its associated clocking waveforms. Each
circle represents a functional element (e.g., block of combinational logic) which has associated with it a label and a propagation
delay. Each rectangle in the figure represents a level-clocked latch which has associated with it a label and a controlling clock
waveform.

1 Introduction

MOS/VLSI technology has popularized a methodology of clocking based on level-clocked latches instead of
the more traditional edge-triggered latches used, for example, in TTL [20] design. The popularity of level-
clocking arises from the simplicity with which a level-clocked latch can be implemented in MOS technologies:
a single transistor can suffice [6, 131. Unfortunately, level-clocking methodologies make the problem of
determining whether a circuit is properly clocked a difficult one, because changes in the output of a latch
need not closely correspond to transitions in its clocking waveform. In contrast, the output of an edge-
triggered latch changes only on a transition of its clock, and consequently, the propagation of computation
through the circuit can be more easily tracked.

To illustrate the basic concepts of level-clocked circuit operation, consider the circuit depicted in Figure 1.
(A simifilar example is discussed in [6, p. 334].) Each circle in the figure represents a functional element (e.g.,
block of combinational logic) which has associated with it a label and a propagation delay. The propagation
delay of a functional element specifies the "settling" time required for the output to assume its correct value
after an input changes. Until it settles, the value of the output is considered to be undefined. Each rectangle
in the figure represents a level-clocked latch which has associated with it a label and a controlling clock.
While the clock for a latch is high, the output of the latch is equal to its input. When the clock changes to
low, the latch stores the value of its input and outputs this value until the clock changes back to high.

A natural question to ask is whether the circuit of Figure 1, with the propagation delays and clocking
waveforms shown, computes properly. For example, after suitable initialization of latch outputs at start-up,
do all latches always hold well-defined values? It might appear that the answer is no, because of the following
fallacious reasoning. At time 12, the input of Latch C should be the result of applying the function computed
by B to the output of Latch D at time 9. Thus, B may have to start a computation at time 9 and finish by
time 12, i.e., finish in 3 time units, but its propagation delay is 4 time units, which is too long.

This reasoning is improper because the computation of B can always begin before time 9. To see this,
look back at the output of Latch C, which we presume must have a proper value at time 3 when clock 01
goes low. At time 8 the output of A has settled, and since clock 02 is high, this value passes immediately
to the output of Latch D. Thus, since the output of C can not change between times 3 and 10, B can
always begin its computation by time 8 instead of time 9, as in the fallacious analysis, and the computation
must complete successfully by time 12. Observe that Latch D transmits a value at a time distinct from any
transition of its clock. This is in contrast to the situation where all latches are edge-triggered, in which case
the time at which a latch tranqmits a value corresponds directly to a transition of its clock.

The circuit of Figure 1 illustrates the most basic type of "timing constraint" that must be met to ensure
proper circuit operation. In general, computations are constrained to occur between the rising edge of one

2

¢2 02

01 02

I II I I I I I I I I I I I I I I j I II I I I

02 1lr ! -

II I I I I I I ! I I I I I I I•
03

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Figure 2: A circuit which demonstrates some of the subtleties of level-clocked circuitry.

clock and the next falling edge of another. For example, between the rising edge of 01 at time 1 and the
falling edge of 02 at time 9, A must be able to take a new input and compute a new output. Thus, the
propagation delay 5 of A must be less than the amount of time between the rising edge of 01 and the falling
edge of 02, i.e., less than 8. Similarly, the propagation delay 4 of B must be less than the amount of time
between the rising edge of 02 at time 7 and the falling edge of 01 at time 12, i.e., less than 5. These two
constraints on the propagation delays of functional elements are examples of the delay constraints that have
been widely recognized in the literature [1, 4, 6, 8, 9, 11, 14, 15, 16, 17, 18, 21, 22].

The circuit also illustrates the scheduling constraints that have been considered by previous timing anal-
yses. Intuitively, scheduling constraints require that functional elements not begin using their inputs before
the inputs are in fact available. For example, if A receives a new input just as 01 falls at time 3, then the
new output of A, which presumably propagates through latch D between times 7 and 9, is not ready until
time 8. Thus, the computation of B is constrained not to begin until time 8 which in turn implies that the
output of B will not be ready until time 12, when 0 1 falls. Observe that since the output of B is ready by
the falling edge of 01, we have in effect found a consistent "schedule" that hks A computing between the
fall of 01 and one time unit before the fall of 42, and has B computing between one time unit before the
fall of 02 and the fall of 01. If the propagation delay of A were 6, instead of 5, no consistent schedule would
be possible, since the computation of A would have to start before the fall of 01. The impossibility of a
consistent schedule would constitute a scheduling constraint violation.

The more complex circuit depicted in Figure 2, demonstrates some of the subtleties that can arise in
level-clocked circuitry. For example, notice that when 4 1

i goes high at time 10, functional element B begins
a computation whose result must "flow through" latch G before 01 goes low at time 12. Thus, the circuit
contains a delay constraint that occurs between transitions that are part of the same clock. In addition, the
time between the rise of 01 at time 10 and the fall of 03 at time 18 must be at least the propagation delay
6 of C plus the propagation delay 1 of B, rather than just the propagation delay of C. As another example,
notice that along the path F -- C - J, there is an apparent delay constraint violation. Specifically, there
are only 5 time units between the rise of 42 at time 13 and the fall of 03 at time 18, while the delay of C is
6 time units. In fact, since 03 is never high between time 6 and time 15, the output of D during times 13
thru 15 must be the same as it was at time 6. Thus, no new computation by C can begin between times 13
and 18, so the violated delay constraint was in fact "fictitious."

3

X20

X(k-1)

Xk
(a) (b)

Figure 3: (a) A functional element has some finite number k of inputs xi through xk, a single output y, an associated k-input
function f and a propagation delay d. (b) A level-clocked latch has a single input x, a single output y, and an associated
digital clock ý.

In the literature, several attempts have been made to develop timing analytical techniques for level-
clocked circuitry, as well as to develop algorithms and heuristics to perform analysis automatically [1, 4, 8,
9, 11, 14, 15, 16, 17, 18, 21, 22]. These authors have addressed both delay and scheduling constraints in
their timing analyses. They have also provided algorithms that are well suited to Lhe circuits for which they
were developed. In general, however, previous timing analysis methods have either applied only to specific
clocking disciplines [1, 9, 11, 14, 15, 16, 21] or have checked scheduling constraints by using some type of
iterative approximation or relaxation technique to verify the existence of some consistent schedule [1, 4, 8.
11, 17, 18, 22].

While working well in practice, the iterative approximation and relaxation technique, used by previous
timing analysis systems are not guaranteed to run in polynomial time. These techniques all fall prey to
pathological worst cases where each successive approximation, or relaxation, moves the analysis only some
small increment toward the desired final solution. In such worst cases, the running time of the analysis can
change drastically in response to a very small change in the circuit being analyzed. For example, simply
changing the delay of a functional element from 1 nanosecond to 999 picoseconds might cause over an order
of magnitude change in the running time of the analysis.

In this paper, we present a polynomial-time algorithm to determine whether a given level-clocked circuit
operates properly. Our algorithm can handle arbitrarily complex clocking disciplines, and verifies the proper
operation of a circuit in worst case O(IVIIEI) time and 0(1VI + [El) space. If circuit components have
bounded fanout, then the algorithm runs in O(IVI 2) time. In addition, our algorithm can identify certain
types of fictitious delay constraints, and thus is less pessimistic than previous methods.

Our algorithm is based on an analysis technique called computational expansion, which provides a succinct
set of provably sufficient conditions for the proper operation of a level-clocked circuit. The computational
expansion is in turn based on a choice of "base step" function, which encapsulates sufficient conditions
for the circuit to operate properly. We provide one such base step function that subsumes the timing
constraints considered by others. Using the computational expansion, we derive a set of sufficient conditions
that can be reduced to a collection of simple linear constraints. These constraints can then be checked
using standard polynomial-time graph algorithms, and thus our algorithm avoids the potential for extreme
worst-case running times which are associated with iterative approximation techniques.

The remainder of this paper is organized as follows. Section 2 gives our formal model for level-clocked
circuits. Section 3 defines the concept of a computational expansion of a circuit, that is used in Section 4
to derive sufficient conditions for proper circuit operation. Section 5 examines methods for checking the
sufficient conditions, and presents an algorithm that verifies whether a circuit operates properly over some
finite interval of time. Section 6 contains our principal contribution: a polynomial-time algorithm for
verifying the proper operation of circuits that use an arbitrary periodic set of clocks. Section 7 presents
some concluding remarks.

2 Level-Clocked Circuits

In this section we present the formal models upon which our timing analysis algorithms are based. Mathe-
matical definitions are given for functional elements, level-clocked latches, level-clocked circuits, and proper
circuit operation. Intuitive descriptions are provided where appropriate.

A functional element has some finite number of inputs zX , Z2, .. ., zx, a single output y, a k-input function
f, and a propagation delay d, as shown in Figure 3(a). The value of the output y at time t is given by the

4

equation:
Sf(I(t),2(t),..,Xk(t)) if x is stable for all i = 1,2,.. .,k

y(t) = over the interval [t - d, t], (1)

otherwise.

Intuitively, a functional element is a block of combinational logic whose output is some function f of its
inputs. The propagation delay d of the functional element is a "settling" time that indicates the amount of
time required, after an input changes value, for the output to assume its correct value. The invalid value I
indicates that the output has no well-defined value. An input is stable over an interval of time if it assumes
a constant valid value over the interval. By definition, a stable input is constant. A constant input need not
be stable, however, since an input could be constant with the invalid value 1.

There are two features of equation 1 that should be noted. First, if an input changes value, the output
immediately takes on the value 1 and does not become valid until a time equal to the propagation delay
d after the change in the input. Thus, the "minimum" propagation delay, or "contamination" delay, of
functional elements is assumed to be 0, and d in fact represents the "maximum" propagation delay of a
functional element. Second, if any input is 1 at time t it is not stable at time t, by definition, and thus the
output must be I. There are functional elements, such as a common MOS NOR gate, where a changing or
undefined input does not necessarily imply an undefined output. Our algorithms do not directly exploit this
aspect of such functional elements.

Functional elements can be used to represent more general circuit components, much as ideal electrical
components, such as ideal resistors, capacitors, and inductors, are used to model real physical devices [2]. For
example, a circuit component with multiple outputs can be represented with several one-output functional
elements. As another example, a circuit component whose propagation delay varies with the input can be
represented with a zero-delay functional element, each of whose inputs is the output of a functional element
that computes the identity function and whose propagation delay is the input-to-output propagation delay
of the original functional element.

In order to simplify the explanation of our algorithms, we assume that clock waveforms always have
well-defined values. Formally, a clock 4 is a mapping from IR U {-oo} to {HIGH, Low), such that the set
{t : 4 has value HIGH at time t} is a set of nonoverlapping closed intervals, and 4 changes value only a finite
number of times during any finite interval. Observe that the set {t : 4 has value Low at time t} is a set
of nonoverlapping open intervals, and thus, when € changes value from HIGH to Low, there exists a well
defined last moment in time when 4, has value HIGH, but no well defined first moment when 4 has value Low.
Similarly, when 46 changes value from Low to HIGH, there exists a well defined first moment in time when
4 has value HIGH, but no well defined last moment when 4, has value Low. This definition is a somewhat
arbitrary convention, which has been chosen for the sake of descriptional brevity. A more general model can
be found in [10].

A level-clocked latch has a single input x, a single output y, and a controlling clock 4, as shown in
Figure 3(b). The value of the output y at time t is given by the equation:

z(t) if 0(t) = HIGH

y(t) - y(t4high) if 0(t) = Low and (2)

t•.high =" sup {t' < t : 0(t') = HIGH)

We generally refer to a level-clocked latch as simply a latch. While the clock for a latch has value HIGH, the
output of the latch is equal to its input. When the clock changes value to Low, the latch stores the value
of its input at the "last moment" when the clock had value HIGH, and outputs this value until the clock
changes value back to HIGH. The propagation delay of a latch is assumed to be zero. Latches with nonzero
propagation delays can be modeled by combining zero-delay latches with "padding" functional elements that

compute the identity function.
Functional elements and level-clocked latches are the two types of components that level-clocked circuits

are constructed from. A level-clocked circuit is a directed graph G = (V, E), where V is a set of components
consisting of functional elements and level-clocked latches, and (u, v) E E if the output of u is an input
of v. We assume without loss of generality that each component has exactly one input edge for each of
its inputs. (Any bus-like structures where multiple components drive a single wire can be modeled by a
functional element with an input for each component that can drive the bus, and an associated function that
can "resolve" bus conflicts.)

5

For convenience, we generally refer to a component and its output interchangeably. In particular, we
often refer to the output of a component by making reference to the component itself. Both a component v
and its output are said to stabilize at time t if the output of v changes to a valid value at time t. Similarly,
both v and its output are said to destabilize at time t if the output of v changes to 1 at time t. Finally, both
v and its output are said to transition .t time t if v either stabilizes or destabilizes at time t.

A clock set for a level-clocked circuit G is a set containing a clock (clocking waveform) 0 for each level-
clocked latch in G. Our timing analysis algorithms can be applied to any clock set 4 with the following
properties:

1. The set 4D is finite, and its elements are fully specified clocks.

2. For any time t, every cycle in G contains at least one latch whose clock has value Low at time t.

Clock sets with the second property are said to be fully synchronous. Our analysis and algorithms are not
directly applicable to circuits that "gate" their clock signals and/or rely on "two-sided" timing constraints [6].
In addition, we assume for simplicity that there exists a start time to > -oo, such that all clocks in 4D are
constant over the interval [-00, to]. Henceforth, we assume these properties hold.

In general, the clocks in a clock set are assumed to repeat after some finite amount of time. A clock set
(D is periodic, if there exists a strictly positive real number 7r, such that 0(t) = 0(t + 7r) for all t > to and
0 E D. The number 7r is the period of t.

For any time t and clock set t it is possible to divide the interval [-00, t] into a finite number of intervals,
or steps, during which all clocks in 4 hold constant values. Steps are ordered in the natural fashion, and we
denote the kth step of the clock set by its index k or by its endpoints (tk, tk+l). (The delimiters "(" and ")"
simply indicate that whether the ends of an interval are open or closed depends on context.) By convention,
the interval [-o, to] is the - 1 st step of the clock set, and tk always denotes the starting endpoint of the kth
step.

Our definition of proper circuit operation is based on a concept of "ideal outputs." We assume that an
ideal circuit is one whose components have infinitesimal propagation delays. The ideal output of a component
at time t is the output at time t of the corresponding component in a structurally, and functionally, equivalent
ideal circuit. A circuit is said to operate properly, if for all time t the outputs of latches whose clocks are
Low at time t are equal to their ideal outputs. This definition of proper operation is similar to the definition
of "correct behavior" used by Szymanski [18], and the definition of "intended behavior" used by Weiner and
Sangiovanni-Vincentelli [22].

3 Computational Expansions

In this section, we show how to construct circuits that perform in a combinational fashion the same com-
putation as a given circuit G. The construction essentially makes multiple copies of components in G and
connects them together in such a way that for every possible transition by some component in G, there
exists a copy of the component, in the combinational circuit, which computes the value that the component
transitions to. The resulting combinational circuit is a "computational expansion" of G. Our timing analysis
algorithms are based on the strong correlations that exist between the operation of G and the operation of
a corresponding computational expansion.

Consider the circuit G' shown in Figure 4. The circuit consists of copies of the components from the
circuit G in Figure 1. Groups of components in G' are associated with steps of the clock set {f1, 02}, and
we use vk to denote the copy of component v, in G, that is in the group associated with step k. Latches
associated with step -1 have constant Low clocks, while all other latches have constant HIGH clocks.

The circuit G' performs in a combinational fashion the same computation as the circuit G. If both 01
and d2 have value Low for all time less than 0, and the latches C- 1 and D- 1 (in G') are initialized so that
they output the values that C and D (in G) hold at time 0, then the ideal output of any component in G
over the interval [-oo, 1) is eventually settled to by a component associated with step -1 in G'. Similarly,
the ideal output of any component in G over the interval [1, 3] is eventually settled to by some component
associated with steps -1 and 1 in G'. In fact, the ideal output of any component in G for all times less than
37 is eventually settled to by some component in G', i.e., G' computes the ideal outputs of G for all times
less than 37. The circuit in Figure 4 is not combinational, in a strict sense, since it includes latches with
clock inputs. Like most combinational circuits, however, the circuit is acyclic, and this acyclicity is exploited
by our timing analysis.

6

-1 0 1 2 3 4 5 6 7 8 9 10 111213 14 15
ii r I I I I

C .1 1 I I

I II I I I L I

I i ! I I I

D

S I I r I I I I I I I I I rD I I...

I I I F I I I , I I II I t I I
02

0 3 6 9 12 15 18 21 24 27 30 33 36

Figure 4: Illustration of computational expansion for the circuit from Figure 1. Dark-shaded path represents a simple delay
constraint.

For simple circuits like the one in Figure 1, a computational expansion can be constructed by making
a copy of a component for each time that the ideal output of the component changes. Consider again the
circuit G' shown in Figure 4. The circuit computes the ideal outputs of the components of G in Figure 1 for
steps -1 through 15. In addition, it also computes the ideal outputs for steps -1 through 16, since the fall
of qi2 at time 36 cannot cause the ideal output of any component in G to differ between steps 15 and 16.
Observe that G' does not compute all the desired ideal outputs for steps -1 through 17, since the rise of 01
at time 37 (not shown) can cause the ideal outputs of A and C (in G) to differ between steps 16 and 17,
thus implying changes in the ideal outputs of A and C which are not "represented" by any component in G'.
A computational expansion for steps -1 through 17 can be obtained, however, by augmenting G' with an
additional copy A1 7 of A, and an additional copy C17 of C. The final output values of A1 7 and C17 can be
insured to equal the desired ideal output values, by placing edges to the new copies from the "most recent"
copies of the components whose outputs are inputs to A and C, i.e., from B15 to C17, and from C17 to A17 .
By beginning with the vertex-induced subgraph defined by the components associated with step -1, and
inductively repeating the construction just described, a computational expansion of G for steps -1 through
n can be constructed for any nonnegative n.

Given some method for establishing the times when the ideal outputs of components change, the con-
struction just described can be easily formalized. Let I(v, k) denote the earliest step such that the ideal
output of a component v is constant over the interval (tI(.,k), tk+1), i.e., the most recent step where the
ideal output of the component changed. For any component v, the set of steps {k : I(v, k) = k} contains
exactly one step for eaJ' time that the ideal output of v changes value, and thus, a copy vk of v is needed
for each step k such that I(v, k) = k. By subscripting copies of components with steps where the ideal
outputs of the original components changed, the edges to any copy vk are easily constructed by noting that
the "most recent" copy ut of any component u whose output is an input to v must be such that I = I(u, k).
Consequently, one naive way to construct a "computational expansion" Gcx = (Vex, Ecx) of a given circuit
G = (V, E) would be to let

VCx = {vk : v E V and 1(v,k) = k}
Ecx = {(u, vk): (u, v) E E, I(u, k) = 1, and I(v,k) = k}.

If the clock set is fully synchronous, then Gcx is acyclic, except for possibly the subcircuit of copies associated
with step - 1. Consequently, if every latch vk such that k 0 -1 has a constant HIGH clock, and every latch
v- 1 has a constant clock, whose value is equal to the clock of v at time -oo, and given suitable initialization,
a simple inductive argument can be used to show that the ideal output of component v during step i is

7

(•l 0•3

C

D

E

I I I II II iI II I I I .I I Ii II I

S I I II I I I I I I I I I I

o 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Figure 5: A circuit demonstrating the inability of changes in ideal output to capture all changes in component outputs. Darkly
shaded regions represent intervals of time when component outputs are undefined.

eventually output by VI(v,,).

Unfortunately, the construction based on changes in ideal output, does not necessarily generate a copy
of a component for each component transition. The problem is that component transitions that occur in the
actual circuit may disappear when the circuit is idealized with delays that approach zero. Thus, while the
construction based on changes in ideal output would always generate a combinational circuit that computes
the same function as the original circuit, it would not always generate a combinational circuit which performs
in a combinational fashion the same computation as the original circuit.

Consider, for example, the simple circuit shown in Figure 5. The functional element A is a simple binary
buffer, while the functional element B is a binary inverter. The subcircuit composed of A, B, C, and D
essentially forms an unstable inverter ring, and consequently the outputs of all four of these components are
expected to flip back-and-forth between logical 1 and 0. Now, due to the large amount of time between the
fall Of 102 and the next rise of 01, the output of B is guaranteed to be stable when 01 rises, and thus the
output of C flips cleanly between 1 and 0, as shown. Even when the output of C flips cleanly, however, the
delay of A is sufficiently long to cause A to output an undefined value while the clock to D is HIGH. In fact,
the output of A, and subsequently the output of D, does not become defined until the exact moment when
402 falls. (Fortunately, this is sufficient to insure a properly latched value for our models.) Now, since the
output of D does not become stable until the fall Of 02, the output of component B does not become stable
until two time units later, and consequently latch E outputs an undefined value, as shown, for one time unit
after each rise Of 03. Observe, however, that if the delay of B were less than 1, the output of E would be
constant at 1 for all time greater than 16. Clearly, for this circuit, the ideal output of E is constant for all

8

time greater than or equal to 16, despite the fact that the actual output of E destabilizes after each rise
of 03. Consequently, a construction based on changes in ideal output is not guaranteed to capture every
transition that occurs during the computation of a given circuit.

To facilitate the handling of difficulties like the one demonstrated in Figure 5, it is convenient to formalize
the notion of a "potential" component transition. Our definition of what constitutes such a transition is
based on the behavior of a circuit whose clocks "stop" during the kth step. Formally, given a circuit G and
(b, the kth approximation of G is the circuit Gk that is identical to G, but clocked by pk, where the clocks
in 4pk are equal to the clocks in t over the interval [-00, tk+1) but are constant for all time greater than or
equal to tk+l, with the values they held during step k. The function B*(v, k) denotes the earliest step i such
that over the interval [-oc, o•] the output of vertex v in G' is equal to the output of v in G1. The minimal
computational expansion for a circuit G = (V, E) is the circuit Gcx = (Vx, Ecx) where

Vc*,x = {vk :vE V and B*(v, k) = k}
E'x = {(u, vk) :(u, v) E E, B(u, k) = 1, and B(v, k) = k}

Intuitively, the minimal computational expansion contains a copy of a component v for each step where
either the ideal output of v changes or a glitch occurs in the actual output of v, i.e., for each step where
the output of v either was intended to change or does change. Edges insure that each copy of v receives the
correct inputs for any particular step. For the sake of clarity, we adopt the convention that components in
V are denoted with unsubscripted lowercase letters such as "v" or "u", while nodes in VcX are denoted with
subscripted lowercase letters such as "vk" or "u,". In addition, a node denoted with "vk" is assumed to be
a copy of component v E V that exists because B*(v, k) = k. Such a node is said to be in the kth level of
Gcx. Every latch vk such that k # -I has a constant HIGH clock. Every latch v- 1 has a constant clock,
whose value is equal to the clock of v at time -oo. Latches whose clocks are Low at time -oc are initialized
so that they have the same outp'ts as the corresponding latches in G. The first 19 levels of the minimal
computational expansion for the circuit from Figure 5 is shown in Figure 6. The darkly shaded node would
not be in the expansion if components were only copied when their ideal output changed.

Unfortunately, it is unlikely that polynomial-time timing verification algorithms can be based on the
minimal computational expansion. The difficulty is with the reliance of the definition of B* on the actual
output of a component. Consider, for example, the circuit in Figure 5, and suppose that all we wished
to determine was whether B*(A, 1) = 1. For the initial conditions shown, B*(A, 1) is obviously 1, since
the output of C is initially 0 while the output of component B is initially 1. Observe, however, that if
the output of C were instead initially 1, then B(A, 1) would be equal to -1. Thus, if we w;9h to verify
the timing of a circuit for all possible initial conditions, many different minimal computation-. expansions
may need to be considered, possibly exponentially many. In addition, for some circuits, particularly those
containing "counters," changes in the output of a particular component may manifest themselves only after an
exponential number of steps have passed. Unfortunately, both these difficulties are likely to be fundamental,
since a reduction from boolean satisfiability [71 sbows that timing verification is an NP-hard problem in
general.

3.1 Base Step Functions

The key to using computational expansion for efficient timing analysis is to use approximations to Gý-y
that are "pessimistic" about when the outputs of components change value. Consider the circuit shown in
Figure 7. The circuit is identical to the circuit in Figure 5, except that component A is now an inverter.
The subcircuit composed of A, B, C, and D now forms a stable inverter ring, and consequently the minimal
computational expansion of the circuit is as shown in Figure 8. Observe, however, that if all the buffers in the
expansion from Figure 6 were rcplaced with inverters, the resulting expansion would, in a sense, approximate
the expansion from Figure 8. Specifically, there exists (in the expansion) a copy of a component for each
transition of the component. The expansion is only an approximation because the converse is not true, i.e.,
an actual or intended change in output does not exist for each copy in the expansion. As will be shown
in Sections 4 and 6, timing verification based on such approximations will never fail to identify a circuit
which does not operate properly. The key to efficient timing verification, is that there exist expansions that
are "easy" to generate, yet approximate the minimal computational expansion regardless of what either the
initial conditions or functions computed by components might be.

Approximations to the minimal computational expansion are specified using a "base step function." A
base step of component v at step k is any step i such that the output of vertex v in the approximation G' is

9

ol 0 i :2 3 4 II 5 6 7I I'9 0I 11 I2 13 14 15 6 I 17 WI 9
'I i II I IIli i I I I IA

i I I I I I II II I I I I I

II II I I iI I II II I I I

I II I II I II I I I

I II II I I

II II I

I I I I
I II IIII I

I I I I

II III I II I II I

I II I I II I II

D
II I II I I II II

E
I I II II I I I I II i I

I I I I I I I Ig I I II I

I I I I I I I II I I II I I
II I I I I I II II

II I I 1 1 1 I i iI

I I I I I I I I I I I I I I i I I I I I

I I II I I I I I I I I I I I I I I I I I

02
i i I I II I I I I I I II

i2iI i I I I II II iI i I I I i

I I II I I

II II I I I

0 3 6 9 12 15 18 21 24 27 30 33 36 39

Figure 6: The minimal computational expansion for the circuit from Figure 5. Darkly shaded node would not be present in
an expansion generated using changes in ideal output.

equal to the output of v in the approximation Gk over the interval [-oo, oo]. Given some base-step function,
B, which maps each component-step pair to a base step, a computational expansion of a circuit G = (V, E)
is defined to be a graph Gcx = (VCx, Ecx) where

VCX = {vk : v E V and B(v,k) = k}
Ecx = {(ui, vk) :(u, v) E E, B(u, k) = 1, and B(v, k) = k}

As before, every latch vk such that k : -1 has a constant HIGH clock, while every latch v- 1 has a constant
clock, whose value is equal to the clock of v at time -co. In addition, latches whose clocks are Low at time
-cc are initialized so that they have the same outputs as the corresponding latches in G. As in the minimal
computational expansion, a node denoted with "vk" is assumed to be a copy of component v E V that exists
because B(v, k) = k. Observe, that the definition of GcX differs from the definition of Gcx only in that
copies of components might be made for any step that meets the specified conditions, rather than just the
earliest step.

Intuitively, base step functions are a convenient way to encapsulate the assumptions about "when things
change" in a given circuit. The adoption of such assumptions is natural whenever a detailed simulation,
like that which may be needed to generate the minimal computational expansion, is considered impractical.
Indeed, as noted earlier, a reduction from boolean satisfiability [7] shows that timing verifications is an NP-
hard problem in general, and thus, indicates that such assumptions are likely to be necessary if the timings
of arbitrary circuits are to be verified within an amount of time which is polynomial in their size. Most of
our results are generic in the sense that they can be applied whenever a set of assumptions can be specified
as a suitable base step function.

3.2 Expanding Base Step Functions

To apply the timing analysis of Section 4, a computational expansion GcX must have three important
properties. First, every cycle in Gcx must be broken by some latch whose clock is Low. Second, if step ý is

10

01 03

I Ii I I I II I g Ig I I I t I I I I

I II I I I I II I I I I I I I II I

D H H i H I I It I I

I I I I Ii I I II I I I I I I I II

I II g I I II I II I I I I I I I I

D I I I I I I I I I I I I I I

0~~~~~ 3_ 6 12 15 1 1 2 7 30 3 6 3 2 4

ofcmonn , in G duin ste k ,f4.Tid o vr de(k ~ nGx ehv , edge

nh e siow ll oni

aruetiia to thsuedto prv tr folwn lemma. |, I I

r aI cii G V EI oo c s t eisstep fun''iz.n.Proof:(sk) P f o

0 3 6 9 12 15 18 I I4 7 IO 3 ;6 9 ý2 45

Figure 7: A circuit whose minimal computational expansion can be approximated by replacing buffers with inverters in the
computational expansion shown in Figure 6. The minimal computational expansion of the circuit is shown in Figure 8.

the base step specified for the component-step pair (v, k), then the node vi must compute the ideal output
of component v in G during step k of sb. Third, for every edge (vta, ut) in GCX, we have i < d, i.e., edges
never go from one level of the expansion to a lower level of the expansion. Any base step function that
is guaranteed to generate computational expansions with these properties is said to be an expanding base

step function. Most base step functions of interest can be shown to be expanding base step functions, using
arguments similar to those used to prove tx io following lemma.

Lemma 3.1 For any circuit G = (V, E) and fully synchronous clock set nb, there exists an espandint base
step function.

Proofl (sketch) Proof of the lemma is by construction, and makes use of two orderings based on the clocks
in -V The first is a derived partial ordering on the components in G, while the second is the natural total
ordering that exists on the steps of 0.

A base step function B which satisfies the lemma can be defined as follows. For any latch v whose clock
is Low during step k, let step i be the least step such that the clock of v is Low during all steps greater
than i and less than or equal to k, i.e., the clock of v is Low over the entire interval (ti+l,,tk+,). The
function B maps (v, k) to step i when v is a latch whose clock is Low during step k, and maps (v, k) to
step k otherwise. The computational expansion that results from B contains no cycles that are unbroken
by a latch whose clock is Low, since the synchronous nature of G prevents any such cycles within the -I1s'
level of the computational expansion, and guarantees that the rest of the computational expansion is in fact

acyclic.

11

-I '0' 1 2' 3 4 5 '61 7 '8: 9 `10' 11 '121 13 1 14 15 iS '6' 17 'I81 19
Ii i II I I I i I i

S I I I I i i I I I i I

S I I I I I I I I I I

A I I I I i I I I I I
AI

I I I II I I I I
S I I II II

I IIIIII I
II II I I I

I II I

I II III

II IIII I

I' l l II

II II I II

I I IID

EI II '' I
II I I

I I II

I I I' I
I I I

0 3 6 9 12 15 18 21 24 27 30 33 36 39

Figure 8: The minimal computational expansion for the circuit from Figure 7. The expansion can be approximated by
replacing buffers with inverters in the computational expansion shown in Figure 6.

To define the derived partial ordering that is used to prove that B is a base-step function, consider the
circuit Gk = (V, Ek), where (V, u) E Ek if and only if (v, u) E E and u is not a latch whose clock input has
value Low during step k. Since , is fully synchronous, the circuit Gk must be acyclic, and thus the edges in
Gk define a partial order on the components in V. The defined partial order is the kth configuration order,
where a component v is before a component u if and only if there exists a path from v to u in Gk. If we
assume that all functional elements have at least one input,' then latches whose clocks are Low during step
k are the only cornuonents which do not have some other component before them in the kth configuration
order. In addition, since Gk is acyclic, if any component in V has a given property, then there must exist
some component with the property, that is first in the sense that no other components with the property
are before it in the kth configuration order. By showing that no such first component can exist, the kth
configuration order can be used to establish that no component has a given property.

An inductive argument can be used to show that B computes base steps. First, we hypothesize inductively
that B computes base steps for all steps less than or equal to k and then use the (k + 1)st configuration
order to show that B computes base steps for step k + 1. Since the hypothesis is obviously true for k = 1,
the function B must, by induction, compute base steps for all component-step pairs.

The proof that B is an expanding base step function is analogous to the proof that B computes base
steps. By using configuration orders to induct on steps, each of the three properties of expanding base step
functions can be shown for B. I

It is important to realize that the models from Section 2 are assumed throughout this paper. This
assumption implies many "natural" properties which are not stated explicitly. For example, Equations 1
and 2 guarantee that the outputs of components change only in response to a change in some input, and must
become constant after some appropriate delay. Without properties such as these, the proof of Lemma 3.1
would not be valid, and the timing constraints to be presented in Section 4 would be of limited use.

I Given the form of Equation 1, any functional element with no inputs would have a constant output value. Consequently,
such a functional element could be deleted from the circuit, as long as components that used the output of the deleted functional
element were suitably modified.

12

9-1 > 5 21-1 > 2.5+2.4
21-7 > 5+2.4

12-1 > 5+4 21-10 > 5+4
12-7 > 4 21-16 > 4

18-1 > 2-5+4 27--1 > 3-5+2-4
18-7 > 5+4 27-7 >_ 2.5+2.4
18--10 > 5 27--10 > 2.5+4

27- 16 > 5+4
27 - 19 > 5

Figure 9: Illustration of delay constraints for the circuit from Figure 1.

4 Timing Constraints

In this section, we define a set of constraints which can serve as a set of sufficient conditions for proper
circuit operation. Despite its infinite size, the set of constraint equations is important, since it can be used
to guarantee proper circuit operation, handling even unconventional circuit;. In Sections 5 and 6, methods
are presented that can check the infinite number of constraints quickly.

A computational expansion of a circuit provides a framework for examining the delay constraints described
in Section 1. Consider again the computational expansion shown in Figure 4. Each node in the computational
expansion corresponds to an output value change in the circuit in Figure 1. For example, C1 exists in the
computational expansion, because a new value propagates to the output of C when 01 changes value to
HIGH at time ty. This change in the output of C implies subsequent changes in the outputs of A and D,
and these changes are reflected by the existence of A, and D3 in the computational expansion. Tbe output
of D3 eventually settles to the ideal output of A, over the interval [t1, t5), that must be latched by D at
time t4. Consequently, the delay dA of A must be less than or equal to the difference between t4 and tj if D
is to hold its ideal output over the interval (t4 , t7). This delay constraint of t4 - tl Ž_ dA is represented by
the dark-shaded path shown in Figure 4. Using reasoning similar to the above, all the constraints listed in
Figure 9 (and many others) can be obtained.

The delay constraints for a circuit G = (V, E) can be specified formally, using an expanding base step
function B and the computational expansion Gcx = (Vcx, Ecx) generated using B. Let v E V be any
latch whose clock changes value from HIGH during step k - 1 to Low during step k. If B(v, k - 1) = i, then
the ideal output of v over the interval (tk, tk+l) is the value computed by vi E VCx. Thus, at time tk, v
must latch the value computed by vi. We indicate this fact by associating with vi a down-time of tk. In a
symmetric fashion, let u be any latch where B(u, j) = j. Either the ideal output of u changes at time tj to
the value computed by ui, or the output of u may experience some type of temporary "glitch." We indicate
this by associating with u1 an up-time of ti. The set A(G, B) of timing constraints is defined as follows:

A(G, B) = {tk - tj > d(a) : vi has down-time tk, ui has up-time ti, and
a1 is a path in Gcx from uj to vi},

where d(a) equals the total propagation delay of all nodes in the path a. By convention, a path from uj
to vi includes the nodes uj and vi, and thus we on occasion use d(v,) to denote the propagation delay of a
single node vi. Observe that for periodic clock sets, the infinite size of Gcx implies that A(G, B) contains
an infinite number of constraints. We call each constraint in A(G, B) a A-constraint.

Although the constraint set A(G, B) is problematic due to its infinite size, it is the only set of constraints
that we need to consider. The "scheduling" constraints mentioned in Section 1 can be ignored, since they
do not imply any constraints that are not included in A(G, B). The following theorem confirms this fact.

Theorem 4.1 If all the constraints in A(G, B) are met, then G operates properly.

Proof: The proof has two parts. The first part shows that if the constraints in A(G, B) are met, then
replacing the constant clocks of Gcx with a simple clock set based on -0 does not change the final outputs
of any nodes in Gcx. Since the base step function used to generate Gcx is assumed to be expanding, this

13

is equivalent to showing that latches in Gcx latch the appropriate ideal outputs of latches in G, when Gcx
is clocked with the new clock set. The second part of the proof shows that at any step k it is possible to
replace the the first k levels of Gcx with the approximation Gk without altering the values latched by the
remaining nodes in Gcx. This is sufficient to prove the theorem, since if latches in G did not hold their
correct ideal outputs at step k, then Gk would input the wrong values into the remaining nodes of Gcx, and
the replacement would not be possible.

PART 1: Let Gcx be clocked by a new clock set 4 simple that associates with each latch vk the clock 6v,
where 0,,, is defined as follows: if Vk has up-time tk but no down-time, then 0,, is Low for all time less
than tk and HIGH for all time greater than or equal to tk. Similarly, if vk has down-time vj but no up-time,
then 0,, is HIGH for all time less than or equal to t1 and Low for all time greater than tj. Finally, if vk
has up-time tk and down-time ti, then 0,,, is HIGH during the interval [tk, t,] and Low otherwise. All other
nodes use clocks identical to those in the original clock set of Gcx. Nodes whose clocks were previously
HIGH for all time, but whose clocks in $simpl, initially have value Low, are initialized to output 1. We
essentially need to show that all latches in Gcx latch the appropriate ideal outputs of latches in G.

If some latch in GcA does not latch the appropriate ideal output, then it is possible to identify a set
of node-time pairs tiNmt are, in some sense, responsible for the failure. Let vk be a level-clocked latch with
down-time It. If the output of vk at time tt is not the appropriate ideal output, then the input to vk must
not have been the appropriate ideal output at time ti. Similarly, if the input to vk is the output of some
functioral eAement uj, then the output of some input to uj must not have been the appropriate ideal output
at time ti minus thc propagation delay d(uj) of uj. If wi is the node in question, whose output is the input of
uj, then the node-time pairs (vk, ti), (uj, tt) and (wit, - d(uj)) are late pairs that prevent vk from latching
the appropriate ideal output. Continuing in this fashion, we can identify the set of all late pairs for vk. A
late pair (wi, tk) is before another late pair (uj, ,t) if Gcx contains a path from wi to uj .

Now, if there exist latches in Gcx that do not latch the appropriate ideal outputs, then we can identify at
least one late pair that is an "unprovoked" late pair. Let vk be any latch that does not latch the appropriate
ideal output and whose set of late pairs does not contain any other latches that do not latch their appropriate
ideal outputs. Since all cycles in Gcx must be broken by at least one latch whose clock is always Low, and
Gcx has only a finite number of nodes in its first I levels, for any I > -1, an induction on the structure of
Gcx can be used to show that such a vk must exist. Similarly, an inductive argument can also be used to
show that the set of late pairs for vk must contain at least one unprovoked late pair that has no late pairs
before it.

If, however, the constraints in A(G, B) are met, then no unprovoked late pair can exist, as we now show.
Assume that there exists an unprovoked late pair (uj, t) for vk, where vk has down-time ti, vkdoes not latch
the appropriate ideal output, and the set of late pairs for vk does not contain any other latches that do not
latch the appropriate ideal outputs. Node uj must be either a functional element, a latch whose clock signal
is Low for all time, or a latch whose clock signal is HIGH over some interval of time. Now, uj cannot be a
functional element, since some node whose output is an input to uj would be part of a late pair that was
before (uj, t). Also, uj cannot be a latch whose clock ,nal is Low for all time, since this would imply that
Gcx was not properly initialized. Finally, the fact that all constraints in A(G, B) are met, implies that uj
cannot be a latch whose clock is HIGH over some interval of time. Consider the most complex case of the
clock signal being HIGH over some closed interval [ti, t,] where t,,, : -oo. The time t cannot be greater
than t,,, since this would violate our definition of vk by implying that uj did not latch the appropriate ideal
output. In addition, t cannot be less than tin, since this would imply that ti - t.. < d(o'), for some path

o, from u2 to vk, and thus that some A(G, B) constraint was violated. Consequently, the clock of uj must
be HIGH at time t, and thus uj cannot be a latch whose clock is HIGH over some interval of time, since the
component whose output is the input to uj would be part of a late pair that was before (uj, t).

Thus, since no unprovoked late pair can exist when all constraint in A(G, B) are met, all latches in Gcx
clocked with 0simpl, must latch the appropriate ideal outputs whenever all constraints in A(G, B) are met.

PART 2: This part of the proof makes direct use of the kth approximation of G. The outputs of components
in Gk are certainly equal to the outputs of components in G over the interval [-oo, tk+t), and thus, the final
values latched by latches in Gk are equal to the values latched during step k by the corresponding latches in
G. We need to show that for any k > -1, we can replace the nodes in levels -1 through k with Gk, without

14

affecting the values latched by the remaining nodes of Gcx.
If a component o-1 in level -1 of Gcx were removed and all edged from v- 1 were replaced with edges

from the copy of v in G-1, then all remaining components in Gcx would still operate as before. To see this.
simply observe that G` and level -1 of Gcx are essentially identical, since they are are clocked by identical
clock sets.

We now complete the proof by showing that if for all -I < i < k, the nodes in levels -1 through i of Gcx
can be replaced with G0, then the nodes in levels -1 through (k+ 1) of Gcx can be replaced with Gk+'. We
use two steps to show that the replacement works for level (k + 1). First, we show that replacing the first
k levels of Gcx with Gk+1 also does not affect whether the remaining nodes in Gcx latch the appropriate
ideal outputs. Second, we show that edges from nodes in level (k + 1) of the Gcx can then be replaced with
edges from the components in GC+' while still not affecting the values latched by the remaining nodes in
Gcx.

We can replace Gk with Gk+i if the output of component v in Gk is equal to the output of v in Gk+'
whenever B(v,k + 1) 0 k + 1. By the definition of "base-step," however, the output of v in Gk must be
equal to the output of v in Gk+1 whenever B(v, k + 1) : k + 1. The outputs of components v such that
B(v, k + 1) = k + I are of no consequence, since vk+l exists in Gcx, and thus there are no edges between v
in Gk and the rest of Gcx.

To show that edges from nodes in level (k + 1) of Gcx can be replaced with edges from components
in Gk+ , we use an argument similar to that used in Lemma 3.1. We need to show that there can be
no component v that is the first in the (k + 1)st configuration order to be such that the edges from node
vk+l cannot be replaced with edges from component v in Gk+l. No functional element can be such a first
component, since the outputs of v and vk+1 are identical. To see this, simply observe that v being first in
the (k + 1)st configuration order implies that all edges to vL+. can be replaced with edges from components
in G"+'. A more intricate argument also shows that a latch whose clock is HIGH during step k + 1 cannot
be such a first component. If the clock of v is HIGH for all time, then the clock of vk+, must also be HIGH
for all time, and the outputs of v and vk+ 1 must once again be identical. If the clock of t, is not HIGH for
all time, then let t, be the time that the clock last changed value from Low to HIGH. Before time ti, the
output of Vk+ 1 must be 1 and consequently the output of vk+ 1 is of no consequence before ti. Thus, since
the outputs of v and vk+l are certainly identical for all time greater than or equal to ti, we can replace
edges from vk+I with edges from v, without affecting the remaining nodes in Gcx. Finally, by combining
the argument for latches whose clocks are HIGH during step k + 1 with the fact that a latch vk+, latches
the appropriate ideal output when nodes in earlier levels are replaced by Gk, it can be shown that a latch
whose clock is Low during step k + 1 also cannot be such a first component. I

Now that the set of A-constraints has been defined, it is possible to appreciate why certain "natural"
functions are not sufficiently general for our purposes. For example, the function I would initially seem
to be a reasonable basis for the construction of a computational expansion, but as illustrated in Figure 6,
there exist circuits for which the function I can result in expansions which are missing potentially important
nodes. Without these nodes, the set of A-constraints define by the expansion would be incomplete.

Similarly, functions that only consider changes in the value output by a component are also not sufficiently
general to handle all circuits. For example, consider the function B5 that maps a component-step pair (v, k)
to the earliest step i such that during the interval (ti, tk+l) the ideal output of v is constant, and v never
destabilizes, i.e., the earliest step i such that the output of v is "settling" over the interval (ti, tk+4). While
for many level-clocked circuits, Bs is likely to be a base-step function, there do exist circuits for which Bs is
not sufficiently general. To see this, consider the circuit fragment shown in Figure 10. The functional element
A is a binary OR-gate whose propagation delay is 4. The first thing to note about the fragment is that the
destabilization of A at time 1 does not correspond to a change in ideal output. It is thus apparent that the
shown waveforms reflect an assumption that the output of A "glitches" each time that one of the inputs to
A changes value. Since many implementations of an OR-gate do not have this property, the example is not
particularly realistic. Nevertheless, the fragment serves its intended illustrative purpose. A consequence of
the "glitch" property, is that the output of A does not stabilize until one propagation delay after the rising
edge of 02 at time 13, and thus, the output of A in invalid over the entire interval [10, 17]. Observe, that
this interval is 3 time units longer than the propagation delay of A. The extreme length of the interval is
due to the fact that two "invalid" intervals of length 4 are overlapping. Unfortunately, Bs does not yield an
expansion which reflects the length of the interval. If one applies the various definitions, one finds that the
minimal computational expansion of the fragment is the "circuit" shown in Figure 11. An expansion based

15

in A

A

I I I I I I II II I II II I II I I

I I I I II It I _J I I I IS I I I I I I I I I I I I I I

o 3 6 9 12 1'5 18 21 24 27 30 3 36 39 42 45

Figure 10: A circuit demonstrating the inability of "settling" to capture all computations by component. The minimal
computational expansion of the circuit is shown in Figure 11.

on BS, however, would not include the darkly shaded nodes, since, for example, the output of A is settling
over the interval [10, 19], and the ideal output of A is constant over that interval, as well.

Given the amount of "mechanism" needed to define the set of A-constraints, it is natural to ask whether
the complexity is justified. There are two primary benefits of defining the set of A-constraints in terms of
a computational expansion and a base-step function. First, the base-step function provides a mechanism
for tailoring the set of A-constraints to the peculiarities of a particular circuit. For example, one could
define a base-step function which reflected the behavior of stable feedback loops, or multiplexors. Second,
the definition of what constitutes a base-step function provides a precise criterion for what properties the
user is guaranteeing when he specifies a "customized" base-step function. Moreover, the following theorem
essentially states that the required properties are precisely the ones that are needed for accurate timing
verification.

Theorem 4.2 For any externally synchronized circuit G, if some constraint in A(G, B*) is not satisfied,
then G is not properly timed.

Proof: (sketch) Proof of the theorem follows the same basic outline as the proof of Theorem 4.1. Here,
however, the existence of a violated A-constraint immediately implies that some latch in GCX must latch I
if GCX is clocked by $Ssmple. The second step of the proof shows that if some latch in CcX latches 1, then
some latch in G must also latch .1., and thus that G is not properly timed.

An argument similar to one used to prove Lemma 3.1 can used to prove that if some latch in GcX latches

16

-1 0 1 12l 3 4 5 :6: 7 8 9 :10: 1 12 :13 :i4: I1 16

A

B

C

I I I I I i 1 I I I I I I

A : , ,

II I I I I I I I I I II I I I I

02

T RU I t if thr eis t' < t such tht at tim t',

I I I I II I I I I I I I I I I I I

0 3 6 9 12 15 18 21 24 27 30 33 36 39

Figure 11: The minimal computational expansion of the circuit shown in Figure 10. The darkly shabded nodes would not be
present in a expansion based on BS'.

I, then some latch in G must also latch .1. Let P be the following predicate:

r TRUE if there exist t' _< t such that, at time t',

the output of v is not equal to the output of
P(V, t) =vi, where i is the base step for v and

the step containing t'

FALSE otherwise.

If P is FALSE for all vertex-time pairs, then the output of any vertex v during step i must be equal to the
output of node vB.(,,,), in the computational expansion, over the interval (ti,tj+). Thus, if P is always
FALSE, then some latch in the original circuit must latch 1, whenever some latch the minimal computational
expansion latches 1. The proof that P is FALSE for all vertex-time pairs parallels the argument used
in Lemma 3.1. As in the proof of Lemma 3.1, the goal is to use the natural ordering of steps and the
configuration orderings of vertices to identify the "first" vertex-time pair for which P is FALSE. A case
analysis can be used to show that no such vertex-time pair can exist. I

5 Practical Timing Analysis

In this section, we begin the process of adapting the constraint set A for use in timing verification algorithms.
First, we examine the implications of different possible base step functions, and present a base step function
b which yields constraints that are less pessimistic than the constraints used by previous timing verification
algorithms [1, 4, 8, 9, 11, 14, 15, 16, 17, 21, 221. Second, we show how to eliminate redundant constraints in
A and obtain a new constraint set 6 whose size grows linearly with the size of the computational expansion.
The definitions of B and 6 immediately yield a simple algorithm for verifying the proper operation of any
circuit that computes for only a finite number of steps. The algorithm is quite general, and is applicable
to circuits using nonperiodic clock sets. In addition, some of these results are used in Section 6, where we
describe an algorithm for verifying the proper operation of circuits that compute indefinitely with periodic
clock sets.

5.1 Base Step Functions

The base step function greatly affects the usefulness of the constraint set A. Ideally, the constraints in A
would be a necessary and sufficient set of conditions for the proper operation of a circuit. Unfortunately,

17

whereas any base step function yields constraints that are sufficient for proper circuit operation, most base
step functions yield constraints that are not necessary; a circuit may operate properly even if it violates some
of the constraints. In general, the constraints in A are not a necessary set of conditions unless the base step
function is essentially equal to B*. Consequently, computing a necessary and sufficient set of conditions is
unlikely to be computationally tractable, since a simple reduction from boolean satisfiability [7] shows that
the problem of computing B* is NP-hard.

In some cases, it is possible to order different base step functions according to how closely the set of
constraints that they yield approximates a set of necessary conditions. Specifically, a base step function B is
less strict than another base step function B', if all circuits that meet the A-constraints yielded by B' also
meet the A-constraints yielded by B, but some circuits that meet the A-constraints yielded by B may not
meet the A-constraints yielded by B'. Intuitively, B is less strict than B', if it disqualifies fewer properly
operating circuits.

The delay constraint equations used by previous timing verifiers loosely corresponds to the A-constraints
yielded by the following recursive base step function:

max(.,v)EE Btrad(u, k) if k # -1, and v is a functional element

Btrad(V, k - 1) if k # -1, and v is a latch whose clock is
Low during step k

k if k $ -1, and v is a latch whose clock is
Btrad(V, k) = Low during step k - l and

HIGH during step k

max(Btrad(v, k - 1), Btrad(u, k)) ifk # -1, (u, v) E E, and v is a latch
whose clock is HIGH during steps k - 1 and k

-1 if k = -1

Ignoring the last "initialization" case, the function Btrad essentially states that functional elements find their
base steps by taking the maximum over the base steps of all components that are inputs to them. Latches
whose clocks are Low have a constant base step, while latches whose clocks change from Low to HIGH
change base step to the step after the clock transition occurs, and behave like functional elements as long as
their clocks remain HIGH. Unfortunately, the function Btrad always disqualifies the circuit shown in Figure 2,
because of the apparent delay constraint violation mentioned in Section 1.

A more sophisticated base step function results in a set of A-constraints which disqualifies fewer properly
operating circuits than previous timing verification algorithms. Previous algorithms essentially assume that
the output of a latch changes whenever its clock changes from Low to HIGH. This assumption is unnecessary,
since the base step of the input to the latch provides a much more reasonable indication of whether a change
in the output has occurred. One base step function B which incorporates this idea is recursively defined as
follows:

max(UV)EE B(u, k) if k # -1, and v is a functional element

B(v, k - 1) if k 6 -1, and v is a latch whose clock is
Low during step k

B(v, k - 1) if k # -1, (u, v) E E, v is a latch whose
clock is HIGH during step k, and

B(v, k - 1) >_ B(u, k)
B(v,k) = if k i -1, (u,v) E E, v is a latch whose

clock is HIGH during step k, and

B(v,k - 1) < B(u,k)

k if k # -1, and v is a latch whose clock is
HIGH during step k and Low during steps
-1 through k - I

-1 if k = -1

The base step function B differs from Btrad in the way it handles a latch whose clock changes value from

18

Low to HIGH. Rather than assume a change in the base step of a latch whose clock changes value from
Low to HIGH, B considers whether the base step of the input has changed since the step when the clock
last changed from HIGH to Low. If the base step of the input has not changed, then the value that passes
through the latch when Lhe clock becomes HIGH will be the same value that was latched when the clock last
became Low. In such a case, no change to the base step of the latch is necessary. Inductive arguments can
be used to show that the function B is an expanding base step function. Unlike Btrad, B does not disqualify
the circuit in Figure 2.

The fifth clause in the definition of B reflects an assumption that the output of a latch whose clock is
initially Low always changes value the first time that the clock for the latch becomes HIGH. This assumption
is by no means arbitrary, since it greatly simplifies the verification of circuits that use periodic clock sets. In
Section 6, we will discuss the implications of this assumption, and possibilities for how it can be removed.

Not surprisingly, it is possible to show that B is less strict than Btrad. The proof makes use of the fact
that i > j implies that B(v, i) > B(v,j) and Btrad(V, i) > Btrad(V,j), i.e., both base step functions are
monotone. In fact, it is possible to show the following general lemma:

Lemma 5.1 If B and B' are two monotone base step functions, and B(v, k) <_ B'(v, k) for all components
v and steps k, then all circuits that meet the A-constraints yielded by B' also meet the A-constraints yielded
by B.

Proof: We show that any circuit that does not meet the A-constraints yielded by B also does not meet the
A-constraints yielded by B'. Let tk - tj > d(a) be a violated A-constraint yielded by B, where the path a
is from uj to vi, and vi has down-time tk and uj has up-time tj. We show that the computational expansion
yielded by B' contains a path a' from some u,, to some vm, such that vm has down-time tk, u,, has up-time
tn greater than or equal to tj and the total delay along o", is equal to the total delay along a. Such a a'
directly implies the violation of a A-constraint yielded by B'.

We demonstrate the existence of a' with an explicit construction. Each node in a has a corresponding
node in a'. The construction begins with a node that corresponds to vi in a and inductively proceeds
backwards along a path that eventually becomes a'. Successive pairs of corresponding components maintain
the invariant that the node in a is never in a higher level than the corresponding node in a'.

To find the node vm that corresponds to vi, simply note that vi has a down-time of tk only if B(v, k) = i.
Thus, we let vm be such that B'(v, k) = m. We know that m > i, since the result of B' is greater than or
equal to the result of B for any component-step pair.

Given any corresponding pair of nodes in a and ao, the next corresponding pair of nodes is found by
simply tracing back through the respective computational expansions. Let wp and w, be a corresponding
pair of nodes in ao and a', respectively. If the component before wp in ao is x7, then the component before
wq in a' is x, where B'(x, q) = s. The conditions of the lemma specify that B'(x, q) > B(x, q). In addition,
since the invariant between corresponding pairs of nodes guarantees that q > p, the monotonicity of B
implies that B(z, q) >_ B(x,p). Consequently, since B(z,p) = r, we can conclude that s > r, and thus that
x, and x, maintain the invariant between pairs of nodes.

The final a' can be used to identify a violated A-constraint yielded by B'. By construction, the total
delay along a' must be equal to the total delay along ao. In addition, since B'(v, k) = m, the last node vm in
a' must have a down-time of tk. Finally, the invariant between corresponding nodes in a and a' guarantees
that the first node u, in a" cannot be in a lower level of the computational expansion than the first node uj of
a, and thus, that un must have a up-time t,, that is greater than or equal to the up-time of uj. Consequently,
the fact that the A-constraint associated with ao is violated, directly implies that the A-constraint associated
with a' must also be violated. I

Corollary 5.1 b is less strict than Btrad-

Proof: As noted earlier, Btrad disqualifies the circuit shown in Figure 2, while b does not. In addition, one
can shown that both B and Btrad are monotone, and thus the corollary follows immediately from Lemma 5.1.

I
While not necessary for all of the results in this paper, monotonicity is a natural property for a base step

function to have, since any base step function B which is not monotone can easily be transformed into a
monotone base step function B' by simply letting B'(v, j) = B(v, i) whenever B(v, i) < B(v, j) for i > j. A
simple check of the definition of base step shows that the function B' is still a base step function, since the

19

fact that B(v, i) < B(v, j) directly implies that B(v, i) is also a base step for the pair (v, j). Computational
expansions generated with monotone base step functions are monotone computational expansions.

5.2 Removing redundant constraints

Careful examination suggests that the majority of the constraints in A are redundant. Consider, for example.
the A-constraints for the computational expansion shown in Figure 4. The down-time 18 that is associated
with D7 is part of three A-constraints: 18 - 1 > 2 . 5 + 4, 18 - 7 > 5 + 4 and 18 - 10 > 5. Observe, however,
that if we rewrite the constraints as 18 > 2 • 5 + 4 + 1, 18 > 5 + 4 + 7 and 18 > 5 + 10, it is apparent that
if the down-time associated with D7 is large enough to satisfy the second of the three constraints, then the
down-time satisfies the other two constraints as well. Thus, the first and last of the three constraints are
redundant.

In order to avoid such redundancies, we formulate a derived constraint set 6. Consider the set of all
constraints in A that correspond to paths ending at a particular node vk in the computational expansion.
Each constraint is of the form t, - ti > d(o), where tj is the down-time associated with vi and ti is the
tip-time associated with the first node in the path a. If a particular constraint is such that the quantity
t, + d(o) is maximal, then that constraint is defined to be a 6-constraint of vk. The constraint set 6 contains
one 6-constraint for each node in the computational expansion. Certainly, all constraints in A are met if
and only if all constraints in 6 are met.

The attractive feature of 6 is that the constraints that it contains are easy to generate, and check,
whenever a monotone base step function is used. The key observation is that the maximal quantity ti + d(o')
exists for all nodes in the computational expansion, not just latches with associated down-times. Let vk be
any node in a computational expansion generated with a monotone base step function. If a is a path to vk
from a latch with an associated up-time ti such that the quantity ti + d(o') is maximal, then the quantity
db(vk) = tj + d(a) is the down-time bound of vk. The down-time bound db(vk) is simple to calculate, using
the following recursive definition:

d(vk) + max(u,,,k)EECX db(uj)) if vk is a functional element,

db(vk) - max(db(ui), tk) if vk is latch with associated

up-time tk and (u1, vk) E Ecx,

(-0 ifk = -1.

If the down-time associated with any node is greater than the down-time bound of the node, then the 6-
constraints for the node are certainly met. The last clause in the equation reflects our assumption that all
clocks have a constant value during step -1, i.e., over the interval [-oo, to]. The clause could be modified
to reflect different assumptions about how a circuit is initialized.

5.3 A verification algorithm for finite clocking schemes

Algorithm FINITE takes a circuit G = (V, E) and a clock set t, and verifies in O((IVI + iEI)K) time whether
the G operates properly for the first K steps of 0. Using the base step function b, Algorithm FINITE
constructs the first K levels of the computational expansion of G and checks the 6-constraints of each node.
Only O(IFI + IEl) working space is needed, since nodes in the computational expansion are generated and
discarded throughout the course of the algorithm. Total space required is O(IFI + IEI + IO)K), however,
since specification of the clocks may require O(1I0K) additional space.

Algorithm FINITE generates, level by level, the nodes in the computational expansion Gcx, checking
6-constraints as nodes are generated. The algorithm begins by generating level -1 of Gcx and computing
for each node the values of B and db. Level 0 of the Gcx is then generated using the definitions of B and
up-time, and 6-constraints of nodes in level 0 are checked using the definitions of db and down-time. Nodes
and their 6-constraints in subsequent levels of Gcx are generated and checked in a like manner. Observe,
however, that the generation of nodes and constraints in level (k + 1) of Gcx only requires the quantities B
and db for nodes vi, where i = &(v, k). Consequently, a node vi in Gcx can be discarded, and its storage
reused, whenever a new node vi is generated for a higher level of Gcx. Observe, that vi could not be
discarded, if B were not monotone.

20

Algorithm FINITE

I FOR each component v DO
2 IF v is latch whose clock is Low during -I" step
3 THEN
4 V.B .-- -1
5 v.db "- -,ýo

6 v. Updated - TRUE
7 ELSE
8 v. Updated - FALSE
9 FOR LEVEL = -1 TO K DO
10 FOR each component v DO
11 UPDATE(v,LEVEL)
12 FOR each component v DO
13 IF v is a latch whose clock is HIGH during step
14 LEVEL and is Low during step LEVEL + 1
15 THEN
16 DownTime - t LEVEL+i
17 IF DownTime < v.db
18 THEN
19 TIMING-FAULT - TRUE

20 FOR each component v DO
21 v. Updated ,- FALSE

Figure 12: Algorithm FINITE takes a circuit G = (V, E) and a clock set 4t, and verifies in O((1VI + IED)K) time that G operates
properly for the first K steps of 4.

Routine UPDATE

1 IF v. Updated = TRUE or
2 v a latch whose clock is Low during step LEVEL
2 THEN
3 v. Updated - TRUE

4 RETURN
5 ELSE
6 FOR each u such that (u. v) E E
7 DO
9 UPDATE(u, LEVEL)
9 IF v is a functional element
10 THEN
11 v.9 - max(u,v)v. U.9

12 ELSEIF v is a latch whose clock is HIGH during step LEVEL and

13 v.B > u.B, where (u, v) E E
14 THEN
15 v.B - u.B
16 ELSEIF v is a latch whose clock is HIGH during step LEVEL and

17 t.B < u.B , where (u, v) E E
18 THEN

19 ,.g - LEVEL
20 v.db - v.d + maxo,,,)EE v.db

21 IF v.db < tLEVEL and v.B = LEVEL
22 THEN
23 v.db - tLEVEL
24 v.Updated .- TRUE
25 RETURN

Figure 13: Routine UPDATE routine takes v and LEVEL as arguments and updates the variables u.B and v.db using the
definitions for stable configuration and tail weight.

21

Figure 12 shows Algorithm FINITE. The global variable LEVEL indicates the level of Gcx currently being
worked on, and v.B, v.db, v.d, and v. Updated are fields of a record that holds data for component v E V.
The fields v.B, v.db and v.d store the base step, down-time bound and propagation delay, respectively, for
v during the step corresponding to LEVEL, and the variable t. Updated is a flag that indicates whether v.B
and v.db have been updated from the values for the previous level of Gcx. Lines 1-8 set v.B and v.db to the
initial values specified by the definitions of b and down-time bound. Lines 10-19 generate nodes and test
6-constraints for a single level of Gcx. The subroutine UPDATE, is shown in Figure 13, and computes t.B

and v.db for the level of Gcx being worked on. UPDATE is implemented recursively, with a straightforward
coding of the recursive definitions of B and db.

For each level of Gcx, the total time needed to perform all calls to UPDATE is o(lVI + JEl), or O(IEI)
if G is connected. To show this, we break the calls to UPDATE into two categories. Calls to UPDATE
that terminate because v has already been updated are cheap, and calls that actually calculate new values
for v.B and v.db are expensive. Cheap calls require only constant time and are charged a single unit of
time. Expensive calls make recursive calls to UPDATE, and then perform computations that require time
proportional to the number of edges to v. The time required for the recursive calls is charged to those calls,
while the time required to actually compute v.B3 and v.db is charged to the call itself. For any component,
only a single expensive call is ever made. Consequently, the total time required for all expansive calls is
O(IVI + JEl). Similarly, since each component makes at most one cheap call for each input, the total time
required for all cheap calls is also O(lVl + El).

Algorithm FINITE runs in O((IVI + IEI)K) time and O(IVI + JEf + k-lK) space. Except for the calls to
UPDATE, the time bound for the internal loop, Lines 10-21, of Algorithm FINITE is O(IVI). Thus, since the
total time needed for all calls to UPDATE can be shown to be O(IVI + lEl) for each level of Gcx, the total
time needed by Algorithm FINITE is O((IVI + IEI)K). Algorithm FINITE requires storage for a constant
number of variables per component in G, the structure of G itself and the clock values for K steps. Thus
the total space required is O(IVI + JEl + 1(I4K).

6 Verifying circuits with periodic clock sets

In this section, we examine how all constraints in A can be checked in the practical case of circuits with
periodic clock sets. In particular, we describe how, for periodic clock sets, the infinite number of constraints
in A can be checked in polynomial time. The method partitions the computational expansion into subgraphs,
or frames, which are essentially the computational expansions of individual clock periods. Constraints in
A are then divided into internal constraints that correspond to paths within individual frames, and cross
constra: Is that correspond to paths that include nodes from multiple frames. Violated constraints of either
type can be detected by searching for negative weight paths in an augmented copy of a single "pessimistic"
frame. The methods we describe immediately lead to an algorithm for verifying the proper operation of
periodically clocked circuits.

6.1 Frames of Computational Expansions

The period 7r of a clock set 4P provides a natural partition of the constraint set A. For any time t. if
t = to + j7r + x where j is a nonnegative integer and 0 < x < ir, then t is in the jth period of 4 and x is
the offset of time t. A A-constraint is a internal constraint, if the corresponding up-time and down-time of
the constraint are both in the same clock period. A A-constraint is a cross constraint, if the corresponding
up-time and down-time of the constraint are in different clock periods. Observe, that since times less than
to are not part of any period, A-constraints with corresponding up-times of -oo (i.e., t-1) are technically
neither internal constraints nor cross constraints. This boundary condition artifact is of no consequence,
however, since A-constraints with corresponding up-times of -oo can never be violated.

The period i" of a clock set 4 also provides a natural partitioi 4f a computational expansion. We define
the kth contour of the computational expansion to be all nodes vi such that i = B(v, k). For any nonnegative
integer j, the jth frame of the computational expansion is the vertex induced subgraph of GCx containing
all nodes in contours (jP) to (jP + (P - 1)), where P is the number of steps in the time interval (to, to + w,].
Observe that a particular contour may contain nodes from several different levels, and may share nodes with
other contours. Internal constraints must correspond to paths that are completely contained within a single
frame, while cross constraints must correspond to paths that include nodes from two or more frames.

22

-1:0: 1 :2: 3: 4 5 6 7:8: 9:10

E E

A: A:6

BA BAI

I t
I II I I I

0 3 6 9 12 15 1

Figure 14 Copttoa exaso frm fo h ici rmFgr .Tesak o h rm r iseinTbe1

23 I I

Figure 14 shows the first frame of the computational expansion generated by b for the circuit from
Figure 2. Nodes in different levels of the computational expansion are separated by dashed lines. All latches
in a particular level must have identical up-times, And in this relatively simple example all latches in a
particular level also have identical down-times. Consequently, the up-times and down-times of the various
latches can be read from the dashed lines that enclose the latch. The 0th contour consists of all the nodes in
level -1, while the Pth (i.e., 10th) contour consists of all the darkly shaded nodes. Observe that the 10th
contour contains nodes from levels 9. 7, 5, and 3, and shares nodes with contours 3 through 9. In fact, for
the example shown, contours (P - 1) and P are identical.

The key to checking the infinite number of A-constraints, in an amount of time which is polynomial in
the size of a given circuit, is the fact that it is sometimes possible to isolate a single "pessimistic" frame of a
computational expansion. For convenience, we extend the definitions of "period" and "offset" so that they
apply to steps as well as times. For nonnegative integers i, j, and k, if i = jP + k where k < P, then step i
of D is in the jth period of (D and k is the offset of step i. Frame j of a computational expansion generated
with base step function B is strict, if for all components v, periods n, and offsets k,

(B(v,jP + k) : jP + k) =:: (B(v, nP + k) #: uP + k).

The equation essentially states that if the base step function for a component v does not change value at
a particular offset k into a strict frame, then the base step function for v cannot change value at offset k
into any other frame. Intuitively, a frame is strict if component outputs change more frequently during that
frame than during any other frame.

An alternate way to define a strict frame would be to require that all components have "more recent"
base steps during that frame than during any other frame. Formally, frame j is strict, if for all components
v, periods n, and offsets k, [(nP + k) - B(v, nP + k)] >_ [(jP + k) - B(v,jP + k)], i.e., the differences
between steps and base steps are minimized during a strict frame. The two definitions are not identical,
since frames that are strict by the first definition may not be strict by the alternat. definition. Consider,
for example, a computational expansion Gcx generated with Btrad. Since Btrad "makes a copy" of a latch
each time that the clock of the latch changes value from Low to HIGH, the tact that the clock set is periodic
implies that all frames in Gcx are strict by the first definition. Observe, however, that not all frames in
GCX are identical. In particular, the first contour of frame 0 is, in general, different from the first contour
of any other frame, due to step -1 boundary condition, and in fact only frame 0 would be considered to be
strict by the alternate definition. It can be shown, however, that the two definitions are identical, except
for such boundary cases involving nodes in the first contour of frame 0. Given the fact that A-constraints
with corresponding up-times of -oo can never be violated, the first definition of strictness is preferred for
its wider applicability.

For the base step function B, frame 0 is strict. In fact, it is possible to show the somewhat stronger
property that for all components v, and offsets i, the difference between (kP + i) and B(v, kP + i) can only
increase from one frame to the next.

Lemma 6.1 If (D is a clock set with P steps in each period, then for any component v and step k > 0,

B(v, k) -> B(v, k + P) - P.

Proof: The lemma certainly holds for k = -1, since for any component v the definition of b states that
B(v, -1) = -1, and B(v, -1 + P) can be at most P - 1, i.e., less than or equal to B(v, -1) + P.

If the lemma holds for all steps less than k, and v is a latch whose clock is Low during step k, then the
lemma holds trivially for v and k. If v is a latch whose clock is Low during step k, then B(v, k) = B(v, k - 1).
Similarly, since the clock of v must also be Low during step k+P, B(v, k+P) = B(v, k+P- 1). Consequently,
B(v, k) >! B(v, k + P) - P, since by assumption B(v, k - 1) > B(v, k - 1 + P) - P.

Given that the lemma holds at step k for latches whose clocks are Low during step k, a simple proof-
by-contradiction shows that the lemma holds at step k for all components. Assume that the lemma fails
to hold for some component at step k. The lemma can only fail to hold for functional elements or latches
whose clocks are HIGH during step k. In addition, since we consider only fully synchronous clock sets, there
must exist some component v for which the lemma holds for any component u whose output is an input to

24

v, but fails for v itself. Let v be such a component, and consider the different cases from the definition of B.
If v is a functional element, then the lemma must hold for v, since the assumption that the lemma holds for
any input u, implies that

max b(u, k) m+ P)-
(uv)EE k(, +

If t, is a latch where either B(v,k - 1) < B(u,k) or the clock of v is Low during steps -I through k - 1,
then B(L,, k) = k, and thus, since B(v, k + P) can be at most k + P, we have B(v, k) > B(v, k + P) - P

and the lemma must hold for v. If v is a latch where b(v, k - 1) > B(u, k), then there are two subcases to
consider. The first is when B(v, k - I + P) > B(u, k + P). In this case, one can show that the lemma holds

for v, since B(v,k) = B(v,k - 1), B(v,k + P) = B(v,k - I + P), and B(v,k -1) > Bv,k- - + P) - P.

The second subcase is when B(v, k - 1 + P) < B(u, k + P). Here, a formal proof i- somewhat involved
but the general strategy is to show that no v can fall into this subcase. More specilically, it is possiole to
show that if B(v, k - 1 + P) < B(u, k + P), then either the clock of v is Low for Some inter%'d of time
(t, tk+p) which includes step B(u, k + P), or B(u,k+P) = k+P. If B(u,k+P) = k+P, then we can
show that b(v, k - 1) > k, which is clearly absurd. If the clock of v is Low for some interval of time

(t, tk+I), which includes step B(u, k + P), then the assumption that B(u, k) -> B(u, k + P) - P implies that
b(v, k - 1) < B(u, k), contradicting the premise that B(v, k - 1) > B(u, k). I

The proof of Lemma 6.1 requires the assumption, mentioned it. Section 5.1, that the output of a latch
whose clock is initial'y Low, always changes value the first ime that the clock for the latch becomes
HIGH. The assumption provides a basis for the inductio' used to prove L 1,nma 6.1 and in turn makes the
identification of a strict frame simple. If the assumption were removed and replaced with a specification
of initial base steps for components, then a strict framt may be difficult to identify, and, indeed, may not
even exist. In such cases, however, it is gene"lly possible to construct a strict pseudoframe, i.e., one that
is more strict than any actual frame in the (,nputational expansion, but that does not itself exist in the
computational expansion. Of course, the generally "pessimistic" nature of such a pseudoframe may lead to
the disqualification of somxe types of properly operating c:.•.-Is.

6.2 Internal Constraints

To check all int-!rnal const,'aints, ;' is sufficient to just check the internal constraints of a single strict
frame. Given 'c,'mma 6.1, the following theorem essentially .t"ates that any violated internal constraint of a
compute`'o~nal expansion generated with B can be detected by checking the internal constraints of frame 0.

Theorem . If a frame of a monotone computational expansion is strict, then all internal constraints for
all jrames (. 2 met if and only if the internal constraints for the strict frame are met.

Proof: Let frame j be strict. All internal constraints are met only if the internal constraints in frame j are
met, since the internal constraints in frame j are in fact internal constraints in the computational expansion.

ddition, since frame j is strict, an argument similar to the one used to prove Lemma 5.1 shows that all

internal constraints in the original computational expansion met whenever all internal constraints in frame
j are met. I

6.3 Cross Constraints

Strict frames can also be used to check cross constraints. A cross constraint corresponds to a path a which
includes nodes from multiple frames of the computational expansion. Observe, that all the nodes from a
particular frame i form a subpath ai of a, and each o'i contributes some delay to the cross constraint, while
intuitively, the fact that ai includes nodes from different contours of the computational expansion implies
that ai contributes some time to the "down-time to up-time" part of the cross constraint. The first subpath
of a contributes its delay, and the amount of time between the up-time of the first node in the path and the
end of the clozk period containing the up-time. The last subpath of a contributes its delay, and the amount
of time between the down-time of the last node in the path and the start of the clock period containing the
down-time. Other subpaths contribute their delay, and the amount of time contained in a full clock period.
By summing all the contributed delays and times, we can obtain the complete cross constraint.

25

Given a frame that begins with contour k, the slacks for the frame encode the worst case delay-and-
time contributions of subpaths in the frame. The clock period irk associated with the frame is the interval

(tk, tk+P), and is of length 7r. For any node vi in first contour of the frame, if a is a path from vi to any
latch in the frame such that the quantity (t - tk) - d(a) is minimized, where t E -,rk is a down-time associated
with the latch, then the quantity head(v) de--f(t- 1k)- d(o) is the head slack of the component corresponding

to vi. Similarly, for any node uj in the first contour immediately after the frame, if a is the path from
any latch in the frame such that the quantity (t±+p - t) - (d(or) - d(uj)) is minimized, where t E irk is a

up-time associated with the latch, then the quantity tail(u)de f(tk+p - t) - (d(o,) - d(uj)) is the tail slack
of the component corresponding to uj. Finally, for any node vi, in first contour of the frame, and node
u1 , in the first contour immediately after the frame, if a' is a path from vi to uj such that the quantity

def
r - (d(a) - d(uj)) is minimized, then the quantity frame(v, u)d- --fr - (d(o') - d(uj)) is the frame slack of the
pair of components corresponding to vi and uj. If no path exists between vi and uj, then there is no frame
slack for the pair (v, u). Similarly, no head slack (or tail slack) exists for component v if no paths exist to (or
from) nodes with associated down-times (or up-times). Intuitively, the slacks are the worst-case differences
between the available amount of time for nodes along a path in the frame to compute and the amount of
time that they require.

v E V L Frame Slacks (frame(v,u)) J Head Slacks j Tail Slacks

A B C D E F G H I J head(v) tail(v)

A 4 5 4 -2 4 4 5 -2 -4 5
B 8
C 7
D 10 11 10 4 10 17 10 17 11 4 4 1

E 4 5 4 -2 4 4 5 -2 -4 7
F
G 7- -

H 4 5 4 -2 4 4 5 -2 -4

I -8

S 1 11 4 10 17 10 17 4 4 1

Table 1: Frame slacks, head slacks, and tail slacks for the frame shown in Figure 14.

The slacks for the frame shown in Figure 14 can be read from Table 1. For example, the table states
that head(A) = -4. Referring back to Figure 14, it is apparent that this is indeed the case, since G1 has
a down-time of 3, A-, is in the first contour of the frame, and there exists a path 0' = A-1---B--G,
from A- 1 to G1 . A search of the frame demonstrates that a' is a worst-case path, and thus head(A) =
(3 - t o) - d(a') = 3 - 7 = -4. Similarly, the table states that tail(A) = 5. Here, the worst-case path is
a' = E7 -- A7, and thus tail(A) = (til - t7) - (d(a') - d(A 7)) = (18 - 13) - (6 - 6) = 5. Observe, that
while A7 is part of the shown frame, A7 is also in the first contour of the next frame, i.e., the 10th contour
of the complete computational expansion. As a final example, the table states that frame(A, D) = -2.
The worst-case path is a" = A- 1---B 1-E--As-I.-B--G--C--J--Dg, and thus frame(A, D) =
7r - (d(a") - d(D9)) = 18 - 20 = -2.

An interesting feature of frame shown in Figure 14 is that a large number of slacks do not exist, as
indicated by the dashes in Table 1. For example, no slacks at all are shown for latch F. This is not
surprising, given the structure of the frame. Observe, that no paths in the frame lead from F-1 (i.e., the
copy of F in the first contour of the frame) to any other latches. Consequently, no head slack exists for F.
Also, there is no path in the frame from F-.1 to any component in the first contour of the next frame, so no
frame slacks exist for F. Finally, since the up-time associated with J-1 is outside the clock period for the
frame, and J- 1 -.ID-I-F 3 is the only path from some other latch in the frame to the copy F3 of F in the
first contour of the next frame, no tail slack exists for F.

If there exists a strict frame, then all cross constraints can be checked by examining sequences of slacks.
Let s = v, u, w, ... , x, y be any sequence of components, possibly with more than a single occurrence of a
particular component. If the slacks of frame j are such that

tail(v) + f rame(v, u) + f rame(u, w) + ... + f rame(z, y) + head(y) < 0,

26

then s is a negative slack sequence for frame j.

Theorem 6.2 If a cross constraint in a monotone computational expansion is violated, and there exists a
strict frame, then either the strict frame contains a violated internal constraint or there exists a negative
slack sequence for the frame.

Proof: The theorem can be proved with methods similar to those used in Theorem 6.1, but making use
of a new base step function Bj. If frame j of a computatinnal expansion generated with some monotone
base step function B is strict, then the base step function Bj essentially specifies for every component step
pair (v, nP + i) a base step I such that the number of steps between nP + i and I is always the same as the
number of steps between step (jP + i) and the base step for v at step (jP + i), specified by B. Thus, the
computational expansion generated with Bj is essentially the computational expansion that would result if
every frame "looked like" frame j. Formally, for any period n, let z(n) = nP - jP. Now, for any offset i,
and component v,

fB(v,jP+k) ifn.=j

B,(v, nP+ i)= x(n) + maxo<k<, B(v,jP + k) if 3k, such that 0< k <i and
B(v, jP + k) = jP + k

x(n) - P + maxo<k<p B(v, jP + k) otherwise.

In order to preserve initial conditions, Bj(v, -1) = B(v, -1) for any component v. It is tempting to think
that Bj(v, nP + i) could be defined as x(n) + B(jP + i). The problem, not surprisingly, is with boundary
conditions. For example, if B = B, and j = 0, the naive definition would specify that Bj(v, P) = P - I
for all v. This specification would probably be inconsistent, since for some v it is almost certain that
B(v, P - 1) $ P - 1.

Unfortunately, if frame j is not the same as frame 0, then the definition of Bj might reference nonexistent
steps that are "before" step 0. Such references to nonexistent steps can be resolved by adding a finite number
of suitable additional steps before step 0. Let level i be the earliest level that contains nodes in frame j.
Level i corresponds to step (ti, ti+i), so we can add the needed steps by replacing each clock 0 with an
augmented clock 0', that is defined as follows:[0(t) if t > to,

0(-oo) if t E [-oo, to - (t,p - t.)),

0(t + r) if t E (to - (tjp - ti), to].

Observe, that the number of additional steps in 0' must be less than the number of steps in a single period
of 0, or else frame j could certainly not have been strict. By assuming the augmented clocks, and using
arguments similar to those in the proof to Lemma 3.1, Bj can be shown to be an expanding monotone base
step function which by Lemma 5.1 is more strict than the original base step function B.

The fact that slacks correspond to minimal time-minus-delay pairs, implies that whenever there exists
a violated cross constraint in the computational expansion Gcxj generated by B,, there must also exist a
negative slack sequence for frame j. The path a in Gcxj that corresponds to the violated -onstraint, can be
broken into subpaths Ol, 62, 03 ,. -. , O', where each subpath only contains nodes from successive frames. Let
0) denote the first node in yi. If vt") is a copy of component u, then the definition of head slack guarantees
that head(u) < tdon - d(a',), where tdown is the amount of time between the start of the clock period
associated with on, and the down-time associated with the last node in a,,. Similarly, if 0) is a copy of
component w, then the definition of tail slack guarantees that tail(w) < t,,p -d(al), where tup is the amount
of time between the the up-time of v(') and the end of the clock period associated with al. Finally, for
i = 2, 3,..., n - 1, if v() is a copy of component u and v('+l) is a copy of component w, then the definition of
frame slack guarantees that frame(u, w) < ir - d(o'). The fact that a corresponds to a constraint violation
implies that the sum of the quantities taP - d(oj), r - d(0'2), ... , ir - d(t7,_..) and tdofn - d(o'n) must be
negative, and thus, V(2), V(3), V(4),..., v(") is a negative slack sequence

The remainder of the proof uses arguments similar to those in Lemma 5.1. As in the proof of Lemma 5.1,
it can be shown that a violated cross constraint in the original computational expansion Gcx implies a

27

violated constraint in the computational expansion Gcxj generated by Bj. Let ao be the path corresponding
to the violated constraint in Gcx. By "backtracking" through the two computational expansions, a path
a' in GcXj can be constructed, where by the monotonicity of B and Bj, a"' also corresponds to a violated
constraint. Now, if a' corresponds to an internal constraint, then the definition of Bj implies that frame j
also contains a violated internal constraint. Also, if a' corresponds to a cross constraint, then there exists a
negative slack sequence for frame j. I

Lemma 6.1 implies that Theorem 6.2 can be applied to computational expansions generated with L. in
addition, an inductive argument similar to that used to prove Lemma 5.1 can be used to show that the
converse of Theorem 6.2 holds for the special case of B. Unfortunately, the converse of Theorem 6.2 is not
true in general, and consequently, there exist base step functions where a negative slack sequence may exist
even when no A-constraint in the computational expansion is violated. Even in such cases, however, the
timing analysis based on the slacks is "safe" in the sense that the presence of a violated A-constraint is never
overlooked.

Negative slack sequences can be detected using an augmented copy of a frame. Given a circuit G = (V, E),
a corresponding computational expansion Gcx = (Vex, Ecx), and a frame GF = (VF. EF) of GCx, let
contour k be the first contour in GF. The A-constraint graph for the frame GF is the graph Ga = (I'll, EA),
where

vA = v vi E VF} U fv: v E V} U {s, t}U
vi : vi E VF with up-time tp}U

{vi"": vi E VF with down-time tdn},

EA = {(v, u) :(vi, u) E EF}U

(V, Vvi) ^ E VA}U

{(vit", vi) :vit" E Va}U
{(v,, vi) vi is in contour k of Gcx}U
{(uj, v,) uj is in contour (k + (P - 1)) of Gcx,

(uj, vi) E ECX and v, is in contour (k + P) of Gcx}U{(vi-, t) I l" E V,}
{(s, vi) :vi V&}.

Each vi E VF has a propagation delay equal to -d(v), each v, has a propagation delay equal to 7r, each v"'
has a propagation delay equal to -(t,,. mod 7r), each vfd" has a propagation delay equal to (td,, mod 7r) and
both s and t have propagation delays equal to 0.

The A-constraint graph GA has been constructed so that the propagation delays along certain paths
are equal to the slacks of the original frame j. For example, if head(v) exists, then there must exist a
path a in frame j, from vi in the first contour of frame j to some latch ut, with down time t, such that
(tin - (ir j)) - d(a') is exactly equal to head(v). Thus, since a' must also exist in Ga, and the delay of
u1" is defined to be (tin mod r), which in turn equals (tin - (ir. j)), the total delay along the path formed
by appending the edge (u,, ut') onto the end of a must be equal to head(v). For similar reasons, if tail(v)
exists, then there must exist a path a' in Ga from some u" to some v, such that d(a') is exactly equal to
tail(v). Finally, if frame(v, u) exists, then there must exist in GA a path a = vi-:.u, from vi in the first
contour of frame j to u, such that d(o') = frame(v, u). A path in GA whose total propagation delay must,
by construction, be equal to some slack is a slack path.

If there exists a strict frame, then all A-constraints can be checked by running any of the standard
shortest paths algorithms on the A-constraint graph GA for the strict frame. A constructive argument can
be used to show that if there exists a negative slack sequence, then GA contains a negative-weight path
from s to t. In addition, violated internal constraints also imply negative-weight paths from s to t. Thus,
by Theorvms 6.2 and 6.1, all A-constraints can be checked by finding the least-weight path from s to t and
comparing the weight of that path to 0.

Theorem 6.3 If a A-constraint in a monotone computational expansion is violated, and frame j is strict,
then the A-constraint graph GA for frame j contains a negative-weight path from s to t.

Proof: Consider first the case of a violated internal constraint tk - ti > d(a'), where a' is a path from vi
to uj within some frame, vi has up-time ti, and uj has down-time tk. By Theorem 6.1, there must also
exist a violated internal constraint tn - tt >_ d(a'), where a' is a path from vi to ur within the strict frame,
v, has up-time ti, u, has down-time tn, and d(a') = d(a). Now, Ga must, by definition, also contain the

28

path a', but where the weight of a' is equal to -d(a). (Recall, that propagation delays are negated in the
definition of GA.) In addition, GA must contain a path s-v"-v- , whose weight is -(t, mod ir), and a path
urn-UmU'•t, whose weight is (t, mod 7r). Now, all three of these paths, can be combined to form a single
path from s to t whose weight is d(a") + (tn mod 7r) - (t, mod ir). Since the constraint is internal, however.
the quantity ((t, mod 7r) - (ti mod 7r)) = (tn - ti), and thus the fact that the constraint is violated directly
implies that the weight of the combined path is less than 0.

The argument for violated cross constraints is similar to the argument for internal constraints. First.
if there exists a violated cross constraint, then by Theorem 6.2, either the strict frame contains a violated
internal constraint, or the there exists a negative slack sequence. It has already been shown that violated
internal constraints imply a negative-weight path from s to t, so all that remains to be shown is that the
existence of a negative slack sequence also implies a negative-weight path from s to t.

The final step of the proof is to show that the slack paths corresponding to a negative slack sequence can
be combined into a single negative-weight path from s to t. Let v, u, w,..., x, y be the implied negative
slack sequence. Since tail(v) exists, there must exist a slack path a' in GA from some u"' to some v,. such
that d(a') is exactly equal to tail(v). In addition, since frame(v, u) exists, there must exist in GA a slack
path a' = vi-lu, from vi in the first contour of frame j to uT such that d(a') = frame(v, u). Since ti is in
the first contour of frame j, however, Ea contains the edge (v=, vi), and thus a' and o-' can be combined into
a single path whose total weight is equal to tail(v) + frame(v, u). Continuing in this fashion, a path from
s to t can be constructed whose total weight is equal to

tail(v) + f rame(v, u) + f rame(u, w) + ... + f rame(x, y) + head(y).

Thus, since this quantity is known to be negative, GA contains a negative-weight path from s to t.
One difficulty with Theorem 6.3 is that it puts no bound on the length of the implied negative-weight

path from s to t. This is not surprising, since the negative-weight path corresponds directly to the presumed
violated A-constraint. Indeed, since there exist circuits, with as few as 4 components, that can operated for
an arbitrary, but not infinite, number of clock cycles before some latch fails to hold its proper value, it is
certain that the length of the implied path is essentially independent of the size of the circuit. The lack of a
useful bound on the length of the implied path indicates that a brute force search for a negative weight path
from s to t would not be an efficient way to perform timing verification. Fortunately, the following related
lemma helps us out of this difficulty.

Lemma 6.2 If Ga contains a negative weight path a' from s to t, then GA contains a path o" of length less
than IVIP, such that a' is either from s to t and of negative weight, or from s to some other vertex and
contains a negative weight cycle.

Proof: If a' is of length less than IVIP, then a" = a'. If a' is of length greater than or equal to IVIP, then
one or more vertices must appear more than once in a', and thus a' must contain one or more cycles. Clearly,
if all positive-weight cycles are removed from a', the resulting path a" is still from s to t and has negative
weight. If oa" is of length less than IVIP, then a" = ao'. Otherwise, the path a"' formed by taking the first
IVI edges in a" must itself contain a cycle. In addition, any cycle in ao" must have negative weight, since a"'
contains no positive cycles, so a" = ao". I

Lemma 6.2 is essentially the last step in an argument stating that a standard shortest-path algorithm
can be used to check all the A-constraints of a given circuit. Theorems 6.1 and 6.2 stated that any violated
A-constraint could be detected by examining a single strict frame, while Lemma 6.1 confirmed that a strict
frame existed for computational expansions generated with B. Theorem 6.3 then showed that the necessary
",,examination" of the strict frame could be performed by finding the shortest path between two nodes in
the A-constraint graph for a strict frame, while Lemma 6.2 showed that in fact the general search for a
negative-weight path could be replaced with a search for "short" negative-weight paths of a particular type.
Thus, the lemma completes the argument, since the Bellman-Ford shortest-path algorithm [12] can be used
to detect paths of precisely this type.

6.4 A verification algorithm for circuits with periodic clock sets

Algorithm PERIODIC takes a circuit G = (V, E) and a periodic clock set 0 and verifies the proper operation
of G in O(IVIIEIP) time and O((IVI + El + I$I)P) space, where P is the number of steps in a single period
of $. Since P is generally a small constant, the time and space requirements of Algorithm PERIODIC are

29

Algorithm PERIODIC
1. Construct frame 0 of the computational expansion.

2. Modify frame 0 to obtain the A-constraint graph for frame 0.
3. Compute the shortest path from 3 to t.

4. Check A-constraints by comparing 0 to the shortest path from s to t.

Figure 15: Algorithm PERIODIC verifies the proper operation of a circuit G = (V, E), with periodic clock set 4, in O((IVIIEFP)
time and O((IVI + IEI + I$I)P) space, where P is the number of steps in a single period of 0.

essentially O(IVIIEI) and O(IVI + IEl), respectively. Algorithm PERIODIC uses the results of Theorem 6.3
and Lemma 6.1 to check the A-constraints for G. The time intensive part of Algorithm PERIODIC involves
detecting negative-weight paths in the A-constraint graph of a strict frame.

Figure 15 shows a high-level statement of Algorithm PERIODIC. Given a level-clocked circuit G = (V, E)
and a clock set with P steps per period, Algorithm PERIODIC checks the A-constraints that would result
if the P steps of the clocks were repeated indefinitely. All A-constraints are checked by constructing the
A-constraint graph for frame 0 and then using a single-pair shortest-path algorithm to check for a negative-
weight path from s to t. By Theorem 6.3, Algorithm PERIODIC checks all A-constraints.

The bulk of the time required by Algorithm PERIODIC goes to computing the shortest path from s to
t in the A-constraint graph for frame 0. The construction of frame 0 and its A-constraint graph can be
performed in o((IVI + IEI)P) time and o(IVI + IEI + I10P) space, with a subroutine similar to Algorithm
FINITE. To check for negative-weight paths from s to t, the Bellman-Ford shortest-path algorithm [12] can
be used. The Bellman-Ford algorithm can detect paths of the type specified by Lemma 6.2 in o(I1VAI IE,%)
time and 0(1 VaI+IE4I) space. Observe, however, that IVAI is proportional to IVIP, and JEA [is proportional
to IEIP, so the time and space bounds can be restated as 0(IVIIEIP2) and 0((IgV + IEJ)P), respectively.

Using a modified version of the Bellman-Ford algorithm, however, the total running time of Algorithm
FINITE can be reduced to O(IVIIEIP). The standard Bellman-Ford algorithm can be conceptually viewed
as a series of "relaxation" steps, where each relaxation examines every edge exactly once. The number of
relaxations required depends on the order in which edges are examined, but in the worst case each relaxation
only determines one edge in the "shortest path" being sought, so IVIP relaxations are needed for the path a"
implied by Lemma 6.2. Thus, since there are IEIP edges to examine, the total running time for the standard
Bellman-Ford algorithm would be 0(IVIIEIP 2). It is possible to show, however, that there exists another
path, analogous to a', that can be found in IVt relaxations, if edges are examined in a special order.

The new required new path can be shown to exist using arguments similar to those in the proof of
Lemma 6.2. In the proof of Theorem 6.3, it was shown that the negative weight path implied by the theorem
could be broken into subpaths, where each subpath corresponded to a slack. In addition, all of these slack
paths have less than IVIP edges, and all but the last ends on some vertex v,. Now, by repeating the argument
from the proof of Lemma 6.2, but only allowing the removal of complete slack paths, it is not difficult to
argue that there exists a path o," consisting of IVI or fewer slack paths, such that either a" is from s to t
and of negative total weight, or a" is from s to some v, and contains a negative weight cycle that includes
some ur.

The Bellman-Ford algorithm can detect the existence of o," in IVf relaxations, if the edges in Ea are
examined in "topological" order [3, 19]. Technically, since GA is not acyclic, no true topological order exists
for the edges in Ea. Fortunately, it is possible to obtain an ordering which is essentially topological, by
removing from Ea all edges from v, vertices, topologically ordering all the edges that remain, and then
appending to the topological ordering the edges from v, vertices. The specific ordering of the edges from
v, vertices is unimportant. Now, since no slack path can contain an edge from a v, vertex, examining the
remaining edges in the order that they appear topologically allows the Bellman-Ford algorithm to "find" an
entire slack path in each relaxation, rather than just a single edge. Thus, since o"' consists of at most IVJ
slack paths, only IVI relaxations are needed, and algorithm terminates in O(IVIIEIP) time.

Overall, therefore, Algorithm PERIODIC runs in O(IVIIEIP) time and 0((IVI + tEl + I$I)P) space.
In practice, both P and 14'I are small constants, so our time and space bounds become 0(IVIIEI) and
O(IVI + [El), respectively. In addition, the fanout of actual circuit components is generally restricted to a
small constant, so we expect that for large circuits lEt is roughly proportional to IVI, and our time bound
becomes O(1V12). As a practical matter, it may be possible to obtain nearly linear observed running times,
by computing the shortest paths using the SHORTESTPATHTREE algorithm presented by Tarjan [19, p. 92].

30

When edge weights are integers, efficient "scaling" algorithms can be used to solve the single-source
shortest-paths problem. For graphs with negative edge weights, the algorithm due to Gabow and Tarjan [5]
runs in O(v'VElg(VW)) time, where W is the magnitude of the largest magnitude weight of any edge in
the graph.

Often in practice, multiple clocks are derived from a single fundamental clock, and it is of great interest
to know the maximum frequency of the findamental clock. It is also desirable to know the critical path
that limits this frequency. By using methods similar to those used to solve the Minimal Cost-to-Time Ratio
Cycle Problem [12], our algorithm can be adapted to determine, in polynomial time, the maximum clock
frequency and its associated critical path.

In order to test the real-world practicality of Algorithm PERIODIC, an experimental timing verification
tool CXCLONE is currently under development. Once completed, CXCLONE will be used to test the observed
efficiency of Algorithm PERIODIC on a variety of solicited academic and industrial VLSI circuits. In addition,
by incorporating mechanisms for handling standard design activities such as "false path" disabling and
hierarchical circuit analysis CXCLONE will be used to explore how the methods presented in this paper can
be applied in an integrated design environment.

7 Conclusion

This paper has established a formal framework for understanding level clocking in VLSI systems. A key
idea in the framework is the use of a base step function to capture any particular set of timing assumptions
about "when things change." The computational expansion of a circuit depends on the results of the base
step function, but not on the details of how those results are computed. Thus, our methodology for verifying
circuits applies equally well to any set of timing assumptions that can be expressed in terms of a base step
function, not just the B function presented.

The framework can be extended to address many design concerns. For example, the framework can be
extended to handle noninstantaneous clock transitions by using a somewhat more complex circuit model [10],
and making suitable modifications to the definitions of B, up-time and down-time. Global clock skew on a
chip can be handled in a similar fashion. Set-up times for latches can also be checked using modifications to
the definition of down-time, but the checking of hold times for latches is more problematic, since we do not
model the nonzero minimum propagation delays that are frequently used to satisfy hold time requirements.
Wp have also made some preliminary studies of circuits incorporating multiplexors whose control inputs are
periodic, and it appears that our framework can be used to analyze these circuits as well.

So-called "two-sided" timing constraints, in which functional elements have minimum propagation delays,
are more problematic. For the "one-sided" constraints we have considered, the designer's intent can be
inferred by letting propagation delays go to 0. For circuits designed with two-sided constraints, the isolation
of ideal outputs is more difficult. We are currently working on the problem of verifying circuits with two-sided
constraints u :ng the notions of base step functions and computational expansion.

Some timing analyzers attempt to handle circuits with data-dependent delays: propagation delays of
functional elements that depend on the particular values of inputs to the element. Our method of computa-
tional expansion applies perfectly well to the analysis of such circuits, but the base step function b used by
our algorithms is, unfortunately, not sophisticated enough to cope with data-dependent delays. Whether an
efficiently computable base step function can be developed for this situation is an open research question.

References
[1] V. D. Agrawal, "Synchronous path analysis in MOS circuit simulator," in Proc. 19th ACM/IEEE Design Au-

tomation Conference (1982), pp. 629-635.
[2] A. G. Bose, and K. N. Stevens, Introductory Network Theory, Harper and Row, 1965.
[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press and McGraw-Hill, 1990.
[4] M. R. Daganais and N. C. Rumin, "Automatic determination of optimal clocking parameters in synchronous

MOS VLSI circuits," in Advanced Research in VLSI: Proc. of the 5th MIT Conference (1988), 19-33.
[5] H. N. Gabow and R. E. Tarjan, "Faster scaling algorithms for network problems," SIAM Journal on Computing,

Vol. 18, No. 5, October 1989, pp. 1013-1036.
[6] L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, Addison-Wesley, Reading,

Massachusetts, 1985.
[7] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Co., San Francisco, 1979.

31

[8] M. Glesner, J. Schuck, and R. B. Steck, "SCAT-a new statistical timing verifier in a silicon compiler," in Proc.
23rd ACM/IEEE Design Automation Conference (1986), pp. 220-226.

[9] R. B. Hitchcock, Sr., "Timing verification and the timing analysis program," in Proc. 19th ACM/IEEE Design
Automation Conference (1982), pp. 594-604.

[10) A. I. Ishii, A Digital Model for Level-Clocked Circuitry, Masters thesis, Laboratory of Computer Science, Mas-
sachusetts Institute of Technology, 1988.

[11] N. P. Jouppi, Timing Verification and Performance Improvement of MOS VLSI Designs, Ph.D. dissertation,
Computer Systems Laboratory, Stanford University, 1984. Also available as Technical Report No. 84-266.

[12] E. L. Lawler, Combinatorial Optimizaton: Networks and Matroids, Holt, Rinehart and Winston, New York.
1976.

[13] C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, Massachusetts, 1980.

[14] T. M. McWilliams, "Verification of timing constraints on large digital systems," in Proc. 17th A CM/IEEE Design
Automation Conference, 1980, pp. 139-147.

[15] M. Muraoka, H. lida, H. Kikuchihara, M. Murakami, annd K. Hirakawa, "ACTAS: An accurate timing analysis
system for VLSI," in Proc. 22 nd ACM/IEEE Design Automation Conference, 1985, 152-158.

[16] J. K. Ousterhout, "A switch-level timing verifier for digital MOS VLSI," IEEE Transactions on Computer-Aided
Design, CAD-4, No. 3, July 1984, pp. 336-349.

[17] K. A. Sakallah, T. N. Mudge and 0. A. Olukotun, "Analysis and design of latch-controlled synchronous digital
circuits," CSE-TR-31-89, Computer Science and Engineering Division, University of Michigan, Ann Arbor.
Michigan, 1989.

[18] T. G. Szymanski, "LEADOUT: A static timing analyzer for MOS circuits," in Proc. 1986 IEEE International
Conference on CAD, 1986, pp. 130-133.

[19] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadel-
phia, Pennsylvania, 1983.

[20] Texas Instruments Incorporated, The TTL Data Book for Design Engineers, Dallas, Texas, 1976.

[21] S. H. Unger and C. J. Tan, "Clocking schemes for high speed digital systems," IEEE Transactions on Computers,
Vol. C-35, No. 10, October 1986, pp. 880-895.

[22] N. Weiner and A. Sangiovanni-Vincentelli, "Timing analysis in a logic synthesis environment," in Proc. 26th
ACM/IEEE Design Automation Conference, 1989, pp. 655-661.

32

DARPA OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 2 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

